Mapping the architecture of single lithium ion electrode particles in 3D, using electron backscatter diffraction and machine learning segmentation

被引:52
作者
Furat, Orkun [1 ]
Finegan, Donal P. [2 ]
Diercks, David [3 ]
Usseglio-Viretta, Francois [2 ]
Smith, Kandler [2 ]
Schmidt, Volker [1 ]
机构
[1] Ulm Univ, Inst Stochast, D-89069 Ulm, Germany
[2] Natl Renewable Energy Lab, 15013 Denver W Pkwy, Golden, CO 80401 USA
[3] Colorado Sch Mines, 1500 Illinois St, Golden, CO 80401 USA
关键词
Convolutional neural network; Statistical image analysis; Model fitting; Copula; Lithium ion battery; Electron backscatter diffraction;
D O I
10.1016/j.jpowsour.2020.229148
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Accurately quantifying the architecture of lithium ion electrode particles in 3D is critical to understanding sub-particle lithium transport, rate limitations, and degradation mechanisms within lithium ion batteries. Most commercial positive electrode materials consist of polycrystalline particles, where intra-particle grains have a range of morphologies and orientations. Here, focused ion beam slicing in sequence with electron backscatter diffraction is used to accurately quantify intra-particle grain morphologies in 3D. The intra-particle grains are identified using convolution neural network segmentation and distinctly labeled. Efficient morphological characterization of the grain architectures is achieved. Bivariate probability density maps are developed to show correlative relationships between morphological grain descriptors. The implication of morphological features on cell performance, as well as the extension of this dataset to guide artificial generation of realistic particle architectures for 3D multi-physics models, is discussed.
引用
收藏
页数:12
相关论文
共 43 条
[1]  
[Anonymous], 2013, Stochastic Geometry and its Applications
[2]  
[Anonymous], 2015, INTRO COPULAS, DOI DOI 10.1007/0-387-28678-0
[3]   Prediction of diffusive transport through polymer films from characteristics of the pore geometry [J].
Barman, Sandra ;
Rootzen, Holger ;
Bolin, David .
AICHE JOURNAL, 2019, 65 (01) :446-457
[4]  
Boots B, 2009, Spatial tessellations: concepts and applications of Voronoi diagrams
[5]  
Burger W., 2016, DIGITAL IMAGE PROCES, P609
[6]   Lithium ion battery electrodes predicted from manufacturing simulations: Assessing the impact of the carbon-binder spatial location on the electrochemical performance [J].
Chouchane, Mehdi ;
Rucci, Alexis ;
Lombardo, Teo ;
Ngandjong, Alain C. ;
Franco, Alejandro A. .
JOURNAL OF POWER SOURCES, 2019, 444
[7]  
Finegan DP, 2020, NAT COMMUN, V11, DOI [10.1038/s41467-020-14467-x, 10.1038/s41467-020-17301-6]
[8]   Machine Learning Techniques for the Segmentation of Tomographic Image Data of Functional Materials [J].
Furat, Orkun ;
Wang, Mingyan ;
Neumann, Matthias ;
Petrich, Lukas ;
Weber, Matthias ;
Krill, Carl E., III ;
Schmidt, Volker .
FRONTIERS IN MATERIALS, 2019, 6
[9]   Stochastic Modeling of Multidimensional Particle Properties Using Parametric Copulas [J].
Furat, Orkun ;
Leissner, Thomas ;
Bachmann, Kai ;
Gutzmer, Jens ;
Peuker, Urs ;
Schmidt, Volker .
MICROSCOPY AND MICROANALYSIS, 2019, 25 (03) :720-734
[10]   Description of Ore Particles from X-Ray Microtomography (XMT) Images, Supported by Scanning Electron Microscope (SEM)-Based Image Analysis [J].
Furat, Orkun ;
Leissner, Thomas ;
Ditscherlein, Ralf ;
Sedivy, Ondrej ;
Weber, Matthias ;
Bachmann, Kai ;
Gutzmer, Jens ;
Peuker, Urs ;
Schmidt, Volker .
MICROSCOPY AND MICROANALYSIS, 2018, 24 (05) :461-470