共 50 条
Structural basis for transcription activation by Crl through tethering of σs and RNA polymerase
被引:19
|作者:
Cartagena, Alexis Jaramillo
[1
,2
]
Banta, Amy B.
[3
,4
,5
]
Sathyan, Nikhil
[2
]
Ross, Wilma
[3
]
Gourse, Richard L.
[3
]
Campbell, Elizabeth A.
[2
]
Darst, Seth A.
[2
]
机构:
[1] Rockefeller Univ, Triinst Training Program Chem Biol, New York, NY 10065 USA
[2] Rockefeller Univ, Lab Mol Biophys, New York, NY 10065 USA
[3] Univ Wisconsin, Dept Bacteriol, Madison, WI 53706 USA
[4] Univ Wisconsin, Div Pharmaceut Sci, Madison, WI 53706 USA
[5] Univ Wisconsin, Great Lakes Bioenergy Res Ctr, Madison, WI 53706 USA
来源:
关键词:
bacterial stress response;
Crl;
cryo-electron microscopy;
RNA polymerase;
RpoS;
GENERAL STRESS-RESPONSE;
ESCHERICHIA-COLI;
CRYSTAL-STRUCTURE;
STATIONARY-PHASE;
BINDING;
PROTEIN;
SUBUNIT;
IDENTIFICATION;
SALMONELLA;
HOLOENZYME;
D O I:
10.1073/pnas.1910827116
中图分类号:
O [数理科学和化学];
P [天文学、地球科学];
Q [生物科学];
N [自然科学总论];
学科分类号:
07 ;
0710 ;
09 ;
摘要:
In bacteria, a primary a-factor associates with the core RNA polymerase (RNAP) to control most transcription initiation, while alternative sigma-factors are used to coordinate expression of additional regulons in response to environmental conditions. Many alternative a-factors are negatively regulated by anti-sigma-factors. In Escherichia coli, Salmonella enterica, and many other gamma-proteobacteria, the transcription factor Crl positively regulates the alternative sigma(s)-regulon by promoting the association of sigma(s) with RNAP without interacting with promoter DNA. The molecular mechanism for Crl activity is unknown. Here, we determined a single-particle cryo-electron microscopy structure of Crl-sigma(s)-RNAP in an open promoter complex with a sigma(s)-regulon promoter. In addition to previously predicted interactions between Crl and domain 2 of sigma(s) (sigma(s)(2)), the structure, along with p-benzoylphenylalanine cross-linking, reveals that Crl interacts with a structural element of the RNAP beta'-subunit that we call the beta'-clamp-toe (beta'CT). Deletion of the beta'CT decreases activation by Crl without affecting basal transcription, highlighting the functional importance of the Crl-beta'CT interaction. We conclude that Crl activates sigma(s)-dependent transcription in part through stabilizing a s RNAP by tethering sigma(s)(2) and the beta'CT. We propose that Crl, and other transcription activators that may use similar mechanisms, be designated sigma-activators.
引用
收藏
页码:18923 / 18927
页数:5
相关论文