Structural basis for transcription activation by Crl through tethering of σs and RNA polymerase

被引:19
|
作者
Cartagena, Alexis Jaramillo [1 ,2 ]
Banta, Amy B. [3 ,4 ,5 ]
Sathyan, Nikhil [2 ]
Ross, Wilma [3 ]
Gourse, Richard L. [3 ]
Campbell, Elizabeth A. [2 ]
Darst, Seth A. [2 ]
机构
[1] Rockefeller Univ, Triinst Training Program Chem Biol, New York, NY 10065 USA
[2] Rockefeller Univ, Lab Mol Biophys, New York, NY 10065 USA
[3] Univ Wisconsin, Dept Bacteriol, Madison, WI 53706 USA
[4] Univ Wisconsin, Div Pharmaceut Sci, Madison, WI 53706 USA
[5] Univ Wisconsin, Great Lakes Bioenergy Res Ctr, Madison, WI 53706 USA
关键词
bacterial stress response; Crl; cryo-electron microscopy; RNA polymerase; RpoS; GENERAL STRESS-RESPONSE; ESCHERICHIA-COLI; CRYSTAL-STRUCTURE; STATIONARY-PHASE; BINDING; PROTEIN; SUBUNIT; IDENTIFICATION; SALMONELLA; HOLOENZYME;
D O I
10.1073/pnas.1910827116
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In bacteria, a primary a-factor associates with the core RNA polymerase (RNAP) to control most transcription initiation, while alternative sigma-factors are used to coordinate expression of additional regulons in response to environmental conditions. Many alternative a-factors are negatively regulated by anti-sigma-factors. In Escherichia coli, Salmonella enterica, and many other gamma-proteobacteria, the transcription factor Crl positively regulates the alternative sigma(s)-regulon by promoting the association of sigma(s) with RNAP without interacting with promoter DNA. The molecular mechanism for Crl activity is unknown. Here, we determined a single-particle cryo-electron microscopy structure of Crl-sigma(s)-RNAP in an open promoter complex with a sigma(s)-regulon promoter. In addition to previously predicted interactions between Crl and domain 2 of sigma(s) (sigma(s)(2)), the structure, along with p-benzoylphenylalanine cross-linking, reveals that Crl interacts with a structural element of the RNAP beta'-subunit that we call the beta'-clamp-toe (beta'CT). Deletion of the beta'CT decreases activation by Crl without affecting basal transcription, highlighting the functional importance of the Crl-beta'CT interaction. We conclude that Crl activates sigma(s)-dependent transcription in part through stabilizing a s RNAP by tethering sigma(s)(2) and the beta'CT. We propose that Crl, and other transcription activators that may use similar mechanisms, be designated sigma-activators.
引用
收藏
页码:18923 / 18927
页数:5
相关论文
共 50 条
  • [21] Structural basis of Ty1 integrase tethering to RNA polymerase III for targeted retrotransposon integration
    Nguyen, Phong Quoc
    Huecas, Sonia
    Asif-Laidin, Amna
    Plaza-Pegueroles, Adrian
    Capuzzi, Beatrice
    Palmic, Noe
    Conesa, Christine
    Acker, Joel
    Reguera, Juan
    Lesage, Pascale
    Fernandez-Tornero, Carlos
    NATURE COMMUNICATIONS, 2023, 14 (01)
  • [22] Structure of the RNA Polymerase Assembly Factor Crl and Identification of Its Interaction Surface with Sigma S
    Banta, Amy B.
    Cuff, Marianne E.
    Lin, Hueylie
    Myers, Angela R.
    Ross, Wilma
    Joachimiak, Andrzej
    Gourse, Richard L.
    JOURNAL OF BACTERIOLOGY, 2014, 196 (18) : 3279 - 3288
  • [23] Structural Basis of Damaged Nucleotide Recognition by Transcribing RNA Polymerase II in the Nucleosome
    Osumi, Ken
    Kujirai, Tomoya
    Ehara, Haruhiko
    Ogasawara, Mitsuo
    Kinoshita, Chiaki
    Saotome, Mika
    Kagawa, Wataru
    Sekine, Shun-ichi
    Takizawa, Yoshimasa
    Kurumizaka, Hitoshi
    JOURNAL OF MOLECULAR BIOLOGY, 2023, 435 (13)
  • [24] Structural basis for transcription activation by the nitrate-responsive regulator NarL
    Kompaniiets, Dmytro
    He, Lina
    Wang, Dong
    Zhou, Wei
    Yang, Yang
    Hu, Yangbo
    Liu, Bin
    NUCLEIC ACIDS RESEARCH, 2024, 52 (03) : 1471 - 1482
  • [25] Structural Basis for Fluorescence Activation by Pepper RNA
    Rees, Huw C.
    Gogacz, Wojciech
    Li, Nan-Sheng
    Koirala, Deepak
    Piccirilli, Joseph A.
    ACS CHEMICAL BIOLOGY, 2022, : 1866 - 1875
  • [26] Structural basis of transcription by bacterial and eukaryotic RNA polymerases
    Sekine, Shun-ichi
    Tagami, Shunsuke
    Yokoyama, Shigeyuki
    CURRENT OPINION IN STRUCTURAL BIOLOGY, 2012, 22 (01) : 110 - 118
  • [27] Structural insights into transcription initiation by yeast RNA polymerase I
    Sadian, Yashar
    Tafur, Lucas
    Kosinski, Jan
    Jakobi, Arjen J.
    Wetzel, Rene
    Buczak, Katarzyna
    Hagen, Wim J. H.
    Beck, Martin
    Sachse, Carsten
    Mueller, Christoph W.
    EMBO JOURNAL, 2017, 36 (18) : 2698 - 2709
  • [28] Structural basis of promoter recognition by Staphylococcus aureus RNA polymerase
    Yuan, Linggang
    Liu, Qingyang
    Xu, Liqiao
    Wu, Bing
    Feng, Yu
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [29] A structural perspective on RNA polymerase I and RNA polymerase III transcription machineries
    Vannini, Alessandro
    BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS, 2013, 1829 (3-4): : 258 - 264
  • [30] Structural basis of archaeal RNA polymerase transcription elongation and Spt4/5 recruitment
    Tarau, Daniela
    Gruenberger, Felix
    Pilsl, Michael
    Reichelt, Robert
    Heiss, Florian
    Koenig, Sabine
    Urlaub, Henning
    Hausner, Winfried
    Engel, Christoph
    Grohmann, Dina
    NUCLEIC ACIDS RESEARCH, 2024, 52 (10) : 6017 - 6035