Derivation of second-order relativistic hydrodynamics for reactive multicomponent systems

被引:15
作者
Kikuchi, Yuta [1 ]
Tsumura, Kyosuke [2 ]
Kunihiro, Teiji [1 ]
机构
[1] Kyoto Univ, Fac Sci, Dept Phys, Kyoto 6068502, Japan
[2] Fujifilm Corp, Anal Technol Ctr, Res & Dev Management Headquarters, Minamiashigara, Kanagawa 2500193, Japan
来源
PHYSICAL REVIEW C | 2015年 / 92卷 / 06期
关键词
RENORMALIZATION-GROUP METHOD; QUARK-GLUON PLASMA; CAUSAL VISCOUS HYDRODYNAMICS; DISSIPATIVE HYDRODYNAMICS; IRREVERSIBLE-PROCESSES; RECIPROCAL RELATIONS; EQUATIONS; REDUCTION; FLOW; THERMODYNAMICS;
D O I
10.1103/PhysRevC.92.064909
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
We derive the second-order hydrodynamic equation for reactive multicomponent systems from the relativistic Boltzmann equation. In the reactive system, particles can change their species under the restriction of the imposed conservation laws during the collision process. Our derivation is based on the renormalization-group method, in which the Boltzmann equation is solved in an organized perturbation method as faithfully as possible and possible secular terms are resummed away by a suitable setting of the initial value of the distribution function. The microscopic formulas of the relaxation times and the lengths are explicitly given as well as those of the transport coefficients for the reactive multicomponent system. The resultant hydrodynamic equation with these formulas has nice properties that it satisfies the positivity of the entropy-production rate and the Onsager's reciprocal theorem, which ensure the validity of our derivation.
引用
收藏
页数:20
相关论文
共 62 条
[11]   Dynamical renormalization group approach to quantum kinetics in scalar and gauge theories [J].
Boyanovsky, D ;
de Vega, HJ ;
Wang, SY .
PHYSICAL REVIEW D, 2000, 61 (06)
[12]   Dynamical renormalization group resummation of finite temperature infrared divergences [J].
Boyanovsky, D ;
de Vega, HJ ;
Holman, R ;
Simionato, M .
PHYSICAL REVIEW D, 1999, 60 (06)
[13]   HYDRODYNAMIC FLOW FROM RHIC TO LHC [J].
Bozek, Piotr .
ACTA PHYSICA POLONICA B, 2012, 43 (04) :689-696
[14]  
Cercignani Carlo., 2002, RELATIVISTIC BOLTZMA, DOI [10.1007/978-3-0348-8165-4, DOI 10.1007/978-3-0348-8165-4]
[15]  
Chapman S., 1970, The mathematical theory of non-uniform gases
[16]   Renormalization group and singular perturbations: Multiple scales, boundary layers, and reductive perturbation theory [J].
Chen, LY ;
Goldenfeld, N ;
Oono, Y .
PHYSICAL REVIEW E, 1996, 54 (01) :376-394
[17]   RENORMALIZATION-GROUP THEORY FOR GLOBAL ASYMPTOTIC ANALYSIS [J].
CHEN, LY ;
GOLDENFELD, N ;
OONO, Y .
PHYSICAL REVIEW LETTERS, 1994, 73 (10) :1311-1315
[18]  
de Groot S. R., 1980, RELATLVLATLC KINETIC
[19]   Derivation of transient relativistic fluid dynamics from the Boltzmann equation [J].
Denicol, G. S. ;
Niemi, H. ;
Molnar, E. ;
Rischke, D. H. .
PHYSICAL REVIEW D, 2012, 85 (11)
[20]   Dissipative Relativistic Fluid Dynamics: A New Way to Derive the Equations of Motion from Kinetic Theory [J].
Denicol, G. S. ;
Koide, T. ;
Rischke, D. H. .
PHYSICAL REVIEW LETTERS, 2010, 105 (16)