HOCHSCHILD-PIRASHVILI HOMOLOGY ON SUSPENSIONS AND REPRESENTATIONS OF Out (Fn)

被引:6
作者
Turchin, Victor [1 ]
Willwacher, Thomas [2 ]
机构
[1] Kansas State Univ, Dept Math, 138 Cardwell Hall, Manhatan, KS 66506 USA
[2] Swiss Fed Inst Technol, Dept Math, Ramistr 101, CH-8092 Zurich, Switzerland
来源
ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE | 2019年 / 52卷 / 03期
基金
欧洲研究理事会; 瑞士国家科学基金会;
关键词
OUTER AUTOMORPHISM-GROUPS; HODGE-TYPE DECOMPOSITION; RATIONAL HOMOTOPY; CYCLIC HOMOLOGY; MAPPING SPACES; ALGEBRA; GRAPHS;
D O I
10.24033/asens.2396
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the Hochschild-Pirashvili homology on any suspension admits the so called Hodge splitting. For a map between suspensions f: Sigma Y -> Sigma Z, the induced map in the Hochschild-Pirashvili homology preserves this splitting if f is a suspension. If f is not a suspension, we show that the splitting is preserved only as a filtration. As a special case, we obtain that the Hochschild-Pirashvili homology on wedges of circles produces new representations of Out(F-n) that do not factor in general through GL(n, Z). The obtained representations are naturally filtered in such a way that the action on the graded quotients does factor through GL(n, Z).
引用
收藏
页码:761 / 795
页数:35
相关论文
共 38 条
[1]  
[Anonymous], 2015, Rational homotopy theory
[2]  
[Anonymous], 1994, INTRO HOMOLOGICAL AL
[3]  
[Anonymous], 2012, Grundl. math. Wiss.
[4]  
Arone G, 2015, ANN I FOURIER, V65, P1
[5]   On the rational homology of high- dimensionalanalogues of spaces of long knots [J].
Arone, Gregory ;
Turchin, Victor .
GEOMETRY & TOPOLOGY, 2014, 18 (03) :1261-1322
[6]   Factorization homology of topological manifolds [J].
Ayala, David ;
Francis, John .
JOURNAL OF TOPOLOGY, 2015, 8 (04) :1045-1084
[7]   Andre-Quillen cohornology and rational homotopy of function spaces [J].
Block, J ;
Lazarev, A .
ADVANCES IN MATHEMATICS, 2005, 193 (01) :18-39
[8]   Abelian covers of graphs and maps between outer automorphism groups of free groups [J].
Bridson, Martin R. ;
Vogtmann, Karen .
MATHEMATISCHE ANNALEN, 2012, 353 (04) :1069-1102
[9]   On the rational homotopy type of function spaces [J].
Brown, EH ;
Szczarba, RH .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 349 (12) :4931-4951
[10]   L∞ models of based mapping spaces [J].
Buijs, Urtzi ;
Felix, Yves ;
Murillo, Aniceto .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2011, 63 (02) :503-524