We demonstrate high efficiency electrophosphorescence in organic light-emitting devices employing a phosphorescent dye doped into a low-molecule material. Methoxy-substituted 1,3,5-tris[4-(diphenylamino)phenyl]benzene (TDAPB) was selected as the host material for the phosphorescent dopant fac-tris(2-phenylpyridine) iridium(III) [Ir(ppy)(3)], and organic films were fabricated by spin-coating. A peak external quantum efficiency of 8.2% (29 cd/A), luminous power efficiency of 17.3 lm/W, and luminance of 33,000 cd/m(2) were achieved at 9.4 V with a 90 nm-thick emitting layer. Emission from the host TDAPB material was not observed in the electroluminescence (EL) and photoluminescence (PL) spectra. The decrease in efficiencies at a high current is analyzed using the triplet-triplet annihilation model. The high performance for the simple device structure in this study is attributed to excellent film forming properties of the material and efficient energy transfer from the host to dopants. (C) 2004 Elsevier B.V. All rights reserved.