BREAST HISTOPATHOLOGY WITH HIGH-PERFORMANCE COMPUTING AND DEEP LEARNING

被引:6
作者
Graziani, Mara [1 ,2 ]
Eggel, Ivan [1 ]
Deligand, Francois [3 ]
Bobak, Martin [4 ]
Andrearczyk, Vincent [1 ]
Mueller, Henning [1 ,5 ]
机构
[1] Univ Appl Sci Western Switzerland, HES SO Valais, Rue Technopole 3, CH-3960 Sierre, Switzerland
[2] Univ Geneva, Dept Comp Sci, Battelle Bldg A,7 Route Drize, CH-1227 Carouge, Switzerland
[3] INP ENSEEIHT, 2 Rue Charles Camichel, F-31000 Toulouse, France
[4] Slovak Acad Sci, Inst Informat, Dubravska Cesta 9, Bratislava 84507, Slovakia
[5] Univ Geneva, Med Fac, Radiol Serv, Geneva, Switzerland
关键词
Histopathology; exascale; medical imaging; sampling;
D O I
10.31577/cai_2020_4_780
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The increasingly intensive collection of digitalized images of tumor tissue over the last decade made histopathology a demanding application in terms of computational and storage resources. With images containing billions of pixels, the need for optimizing and adapting histopathology to large-scale data analysis is compelling. This paper presents a modular pipeline with three independent layers for the detection of tumoros regions in digital specimens of breast lymph nodes with deep learning models. Our pipeline can be deployed either on local machines or high-performance computing resources with a containerized approach. The need for expertise in high-performance computing is removed by the self-sufficient structure of Docker containers, whereas a large possibility for customization is left in terms of deep learning models and hyperparameters optimization. We show that by deploying the software layers in different infrastructures we optimize both the data preprocessing and the network training times, further increasing the scalability of the application to datasets of approximatively 43 million images. The code is open source and available on Github.
引用
收藏
页码:780 / 807
页数:28
相关论文
共 43 条
[1]  
Aeffner Famke, 2019, J Pathol Inform, V10, P9, DOI 10.4103/jpi.jpi_82_18
[2]  
Alvarez-Melis D, 2018, ADV NEUR IN, V31
[3]  
[Anonymous], CA CANCER J CLIN
[4]  
[Anonymous], 2012, Proc. the 26th International Conference on Neural Information Processing Systems
[5]  
[Anonymous], 2017, ARXIV171201887
[6]   From Detection of Individual Metastases to Classification of Lymph Node Status at the Patient Level: The CAMELYON17 Challenge [J].
Bandi, Peter ;
Geessink, Oscar ;
Manson, Quirine ;
van Dijk, Marcory ;
Balkenhol, Maschenka ;
Hermsen, Meyke ;
Bejnordi, Babak Ehteshami ;
Lee, Byungjae ;
Paeng, Kyunghyun ;
Zhong, Aoxiao ;
Li, Quanzheng ;
Zanjani, Farhad Ghazvinian ;
Zinger, Svitlana ;
Fukuta, Keisuke ;
Komura, Daisuke ;
Ovtcharov, Vlado ;
Cheng, Shenghua ;
Zeng, Shaoqun ;
Thagaard, Jeppe ;
Dahl, Anders B. ;
Lin, Huangjing ;
Chen, Hao ;
Jacobsson, Ludwig ;
Hedlund, Martin ;
Cetin, Melih ;
Halici, Eren ;
Jackson, Hunter ;
Chen, Richard ;
Both, Fabian ;
Franke, Joerg ;
Kusters-Vandevelde, Heidi ;
Vreuls, Willem ;
Bult, Peter ;
van Ginneken, Bram ;
van der Laak, Jeroen ;
Litjens, Geert .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2019, 38 (02) :550-560
[7]   Mitotic counts in breast cancer should be standardized with a uniform sample area [J].
Bonert, Michael ;
Tate, Angela J. .
BIOMEDICAL ENGINEERING ONLINE, 2017, 16
[8]  
Campbell C., 2018, 2018 IEEE SIGN PROC, DOI [10.1109/SPMB.2018.8615614, DOI 10.1109/SPMB.2018.8615614]
[9]  
Cardoso J., 2020, LECT NOTES COMPUTER, V12446, P193, DOI [10.1007/978-3-030-61166-8_21, DOI 10.1007/978-3-030-61166-821]
[10]   Intelligible Models for HealthCare: Predicting Pneumonia Risk and Hospital 30-day Readmission [J].
Caruana, Rich ;
Lou, Yin ;
Gehrke, Johannes ;
Koch, Paul ;
Sturm, Marc ;
Elhadad, Noemie .
KDD'15: PROCEEDINGS OF THE 21ST ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2015, :1721-1730