A coupled numerical analysis of shield temperatures, heat losses and residual gas pressures in an evacuated super-insulation using thermal and fluid networks - Part II: Unsteady-state conditions (cool-down period)

被引:4
作者
Reiss, H. [1 ]
机构
[1] Univ Wurzburg, Dept Phys, D-97074 Wurzburg, Germany
关键词
thin films; nitrogen; thermal conductivity; cryostats;
D O I
10.1016/j.cryogenics.2006.07.008
中图分类号
O414.1 [热力学];
学科分类号
摘要
This paper analyses the cool-down period of a 300 L super-insulated cryogenic storage tank for liquid nitrogen. Storage tank and evacuated shields are the same as described in part I of this paper where stationary states were investigated. The aim of the present paper is to introduce thermal resistance networks as a tool to quantitatively understand and control also unsteady-states like cool-down of super-insulations. Numerical simulations using thermal resistance networks have been performed to determine time dependence of local shield temperatures and heat loss components. Coupling between radiation and solid conduction is investigated under these conditions. Using the numerical results, we have checked an experimental method suggested in the literature to separate heat losses through the insulation from losses through thermal bridges by measurement of unsteady-state evaporation rates. The results of the simulations confirm that it takes the outer shields much longer to reach stationary temperature; cool-down does not proceed uniformly in the super-insulation. Coupling between different heat transfer modes again is obvious. Thermal emissivity is important also during the early phase of cool-down. Using the obtained numerical results, the experimental method to separate heat loss components could only roughly been confirmed for thick metallic foils. (C) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:864 / 872
页数:9
相关论文
共 9 条
[1]  
Fastowski WG, 1970, KRYOTECHNIK
[2]   INVESTIGATIONS INTO THE THERMAL PERFORMANCE OF MULTILAYER INSULATION (300 - 77-K) .2. THERMAL-ANALYSIS [J].
JACOB, S ;
KASTHURIRENGAN, S ;
KARUNANITHI, R .
CRYOGENICS, 1992, 32 (12) :1147-1153
[3]  
Kaganer M.G.e., 1969, Thermal Insulation in Cryogenic Engineering
[4]  
Moaveni S., 1999, FINITE ELEMENT ANAL
[5]  
NEUBRONNER M, 2002, VDI WARMEATLAS, V9
[6]   A coupled numerical analysis of shield temperatures, heat losses and residual gas pressures in an evacuated super-insulation using thermal and fluid networks - Part I: Stationary conditions [J].
Reiss, H .
CRYOGENICS, 2004, 44 (04) :259-271
[7]  
REISS H, IN PRESS CRYOGENICS
[8]  
SANDNER H, 2002, STOFFWERTE REINEN ME
[9]  
VONARDENNE M, 1973, TABELLEN ANGEW PHYS, V3, P197