NON-ARCHIMEDEAN ANALYTIFICATION OF ALGEBRAIC SPACES

被引:22
作者
Conrad, Brian [1 ]
Temkin, Michael [2 ]
机构
[1] Stanford Univ, Dept Math, Stanford, CA 94305 USA
[2] Univ Penn, Dept Math, Philadelphia, PA 19104 USA
基金
美国国家科学基金会;
关键词
RIGID GEOMETRY;
D O I
10.1090/S1056-3911-09-00497-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study quotient problems for etale equivalence relations in non-archimedean geometry, and we construct quotients for such equivalence relations in Berkovich's category of analytic spaces, assuming a separatedness hypothesis on the equivalence relation. We also give counterexamples that show the necessity of separatedness hypotheses, in contrast with the complex-analytic case. As an application, we construct analytifications for separated algebraic spaces over a non-archimedean field.
引用
收藏
页码:731 / 788
页数:58
相关论文
共 32 条
[1]  
[Anonymous], 1970, LECT NOTES MATH
[2]  
Artin M., 1970, Ann. Math., V91, P88, DOI 10.2307/1970602
[3]  
Artin Michael, 1969, Glob. Anal., P21
[4]  
Atiyah M.F., 1969, Introduction to commutative algebra
[5]  
Berkovich V., 1990, Spectral Theory and Analytic Geometry over Non-Archimedean Fields. Mathematical Surveys and Monographs
[6]   FORMAL AND RIGID GEOMETRY .1. RIGID-SPACES [J].
BOSCH, S ;
LUTKEBOHMERT, W .
MATHEMATISCHE ANNALEN, 1993, 295 (02) :291-317
[7]   FORMAL AND RIGID GEOMETRY .2. FLATTENING TECHNIQUES [J].
BOSCH, S ;
LUTKEBOHMERT, W .
MATHEMATISCHE ANNALEN, 1993, 296 (03) :403-429
[8]   STABLE REDUCTION AND UNIFORMIZATION OF ABELIAN-VARIETIES .1. [J].
BOSCH, S ;
LUTKEBOHMERT, W .
MATHEMATISCHE ANNALEN, 1985, 270 (03) :349-379
[9]  
Bosch Siegfried, 1984, Non-Archimedean analysis, volume 261 of Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]
[10]   Irreducible components of rigid spaces [J].
Conrad, B .
ANNALES DE L INSTITUT FOURIER, 1999, 49 (02) :473-+