Finite-temperature theory of superfluid bosons in optical lattices

被引:20
作者
Baillie, D. [1 ]
Blakie, P. B. [1 ]
机构
[1] Univ Otago, Dept Phys, Jack Dodd Ctr Quantum Technol, Dunedin 9016, New Zealand
来源
PHYSICAL REVIEW A | 2009年 / 80卷 / 03期
关键词
BOSE-EINSTEIN CONDENSATION; BOGOLIUBOV APPROACH; PHASE-TRANSITION; GASES; ATOMS; INSULATOR; DYNAMICS; STATES;
D O I
10.1103/PhysRevA.80.033620
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A practical finite-temperature theory is developed for the superfluid regime of a weakly interacting Bose gas in an optical lattice with additional harmonic confinement. We derive an extended Bose-Hubbard model that is valid for shallow lattices and when excited bands are occupied. Using the Hartree-Fock-Bogoliubov-Popov mean-field approach, and applying local-density and coarse-grained envelope approximations, we arrive at a theory that can be numerically implemented accurately and efficiently. We present results for a three-imensional system, characterizing the importance of the features of the extended Bose-Hubbard model and compare against other theoretical results and show an improved agreement with experimental data.
引用
收藏
页数:19
相关论文
共 74 条
[31]   Collapse and revival of the matter wave field of a Bose-Einstein condensate [J].
Greiner, M ;
Mandel, O ;
Hänsch, TW ;
Bloch, I .
NATURE, 2002, 419 (6902) :51-54
[32]   Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms [J].
Greiner, M ;
Mandel, O ;
Esslinger, T ;
Hänsch, TW ;
Bloch, I .
NATURE, 2002, 415 (6867) :39-44
[33]   Exploring phase coherence in a 2D lattice of Bose-Einstein condensates -: art. no. 160405 [J].
Greiner, M ;
Bloch, I ;
Mandel, O ;
Hänsch, TW ;
Esslinger, T .
PHYSICAL REVIEW LETTERS, 2001, 87 (16)
[34]   Conserving and gapless approximations for an inhomogeneous Bose gas at finite temperatures [J].
Griffin, A .
PHYSICAL REVIEW B, 1996, 53 (14) :9341-9347
[35]   Dynamical tunnelling of ultracold atoms [J].
Hensinger, WK ;
Häffer, H ;
Browaeys, A ;
Heckenberg, NR ;
Helmerson, K ;
McKenzie, C ;
Milburn, GJ ;
Phillips, WD ;
Rolston, SL ;
Rubinsztein-Dunlop, H ;
Upcroft, B .
NATURE, 2001, 412 (6842) :52-55
[36]   Single-atom density of states of an optical lattice [J].
Hooley, C ;
Quintanilla, J .
PHYSICAL REVIEW LETTERS, 2004, 93 (08) :080404-1
[37]   QUANTUM-MECHANICAL MANY-BODY PROBLEM WITH HARD-SPHERE INTERACTION [J].
HUANG, K ;
YANG, CN .
PHYSICAL REVIEW, 1957, 105 (03) :767-775
[39]   Multiflavor bosonic Hubbard models in the first excited Bloch band of an optical lattice [J].
Isacsson, A ;
Girvin, SM .
PHYSICAL REVIEW A, 2005, 72 (05)
[40]   Cold bosonic atoms in optical lattices [J].
Jaksch, D ;
Bruder, C ;
Cirac, JI ;
Gardiner, CW ;
Zoller, P .
PHYSICAL REVIEW LETTERS, 1998, 81 (15) :3108-3111