Finite-temperature theory of superfluid bosons in optical lattices

被引:20
作者
Baillie, D. [1 ]
Blakie, P. B. [1 ]
机构
[1] Univ Otago, Dept Phys, Jack Dodd Ctr Quantum Technol, Dunedin 9016, New Zealand
来源
PHYSICAL REVIEW A | 2009年 / 80卷 / 03期
关键词
BOSE-EINSTEIN CONDENSATION; BOGOLIUBOV APPROACH; PHASE-TRANSITION; GASES; ATOMS; INSULATOR; DYNAMICS; STATES;
D O I
10.1103/PhysRevA.80.033620
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A practical finite-temperature theory is developed for the superfluid regime of a weakly interacting Bose gas in an optical lattice with additional harmonic confinement. We derive an extended Bose-Hubbard model that is valid for shallow lattices and when excited bands are occupied. Using the Hartree-Fock-Bogoliubov-Popov mean-field approach, and applying local-density and coarse-grained envelope approximations, we arrive at a theory that can be numerically implemented accurately and efficiently. We present results for a three-imensional system, characterizing the importance of the features of the extended Bose-Hubbard model and compare against other theoretical results and show an improved agreement with experimental data.
引用
收藏
页数:19
相关论文
共 74 条
[1]  
Abramowitz M., 1970, HDB MATH FUNCTIONS
[2]   Macroscopic quantum interference from atomic tunnel arrays [J].
Anderson, BP ;
Kasevich, MA .
SCIENCE, 1998, 282 (5394) :1686-1689
[3]   Damping of condensate oscillations of a trapped Bose gas in a one-dimensional optical lattice at finite temperatures [J].
Arahata, Emiko ;
Nikuni, Tetsuro .
PHYSICAL REVIEW A, 2008, 77 (03)
[4]   Critical velocity in a Bose gas in a moving optical lattice at finite temperatures [J].
Arahata, Emiko ;
Nikuni, Tetsuro .
PHYSICAL REVIEW A, 2009, 79 (06)
[5]  
Aschcroft N., 1976, Solid State Physics
[6]   Critical temperature of a Bose gas in an optical lattice [J].
Baillie, D. ;
Blakie, P. B. .
PHYSICAL REVIEW A, 2009, 80 (03)
[7]   Degenerate Fermi gas in a combined harmonic-lattice potential [J].
Blakie, P. B. ;
Bezett, A. ;
Buonsante, P. .
PHYSICAL REVIEW A, 2007, 75 (06)
[8]   Bose-Einstein condensation in an optical lattice [J].
Blakie, P. B. ;
Wang, Wen-Xin .
PHYSICAL REVIEW A, 2007, 76 (05)
[9]   Many-body physics with ultracold gases [J].
Bloch, Immanuel ;
Dalibard, Jean ;
Zwerger, Wilhelm .
REVIEWS OF MODERN PHYSICS, 2008, 80 (03) :885-964
[10]  
Bogoliubov N., 1947, J. Phys., V11, P23