Semiregular automorphisms of cubic vertex-transitive graphs and the abelian normal quotient method

被引:0
作者
Morris, Joy [1 ]
Spiga, Pablo [2 ]
Verret, Gabriel [3 ]
机构
[1] Univ Lethbridge, Dept Math & Comp Sci, Lethbridge, AB T1K 3M4, Canada
[2] Univ Milano Bicocca, Dipartimento Matemat & Applicaz, I-20125 Milan, Italy
[3] Univ Western Australia, Ctr Math Symmetry & Computat, Crawley, WA 6009, Australia
基金
澳大利亚研究理事会;
关键词
PERMUTATION-GROUPS; ORDER;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We characterise connected cubic graphs admitting a vertex-transitive group of automorphisms with an abelian normal subgroup that is not semiregular. We illustrate the utility of this result by using it to prove that the order of a semiregular subgroup of maximum order in a vertex-transitive group of automorphisms of a connected cubic graph grows with the order of the graph.
引用
收藏
页数:12
相关论文
共 19 条
[1]   Serniregular automorphisms of vertex-transitive cubic graphs [J].
Cameron, P ;
Sheehan, J ;
Spiga, P .
EUROPEAN JOURNAL OF COMBINATORICS, 2006, 27 (06) :924-930
[2]   Transitive permutation groups without semiregular subgroups [J].
Cameron, PJ ;
Giudici, M ;
Jones, GA ;
Kantor, WM ;
Klin, MH ;
Marusic, D ;
Nowitz, LA .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2002, 66 :325-333
[3]  
CAMERON PJ, 2001, DISCRETE MATH, V231, P469
[4]   Semiregular automorphisms of vertex-transitive graphs of certain valencies [J].
Dobson, Edward ;
Malnic, Aleksander ;
Marusic, Dragan ;
Nowitz, Lewis A. .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2007, 97 (03) :371-380
[5]   Analysing finite locally s-arc transitive graphs [J].
Giudici, M ;
Li, CH ;
Praeger, CE .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 356 (01) :291-317
[6]   All vertex-transitive locally-quasiprimitive graphs have a semiregular automorphism [J].
Giudici, Michael ;
Xu, Jing .
JOURNAL OF ALGEBRAIC COMBINATORICS, 2007, 25 (02) :217-232
[7]   Semiregular automorphisms of cubic vertex transitive graphs [J].
Li, Cai Heng .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 136 (06) :1905-1910
[8]   Arc-transitive cycle decompositions of tetravalent graphs [J].
Miklavic, Stefko ;
Potocnik, Primoz ;
Wilson, Steve .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2008, 98 (06) :1181-1192
[9]   Bounding the order of the vertex-stabiliser in 3-valent vertex-transitive and 4-valent arc-transitive graphs [J].
Potocnik, Primoz ;
Spiga, Pablo ;
Verret, Gabriel .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2015, 111 :148-180
[10]   Cubic vertex-transitive graphs on up to 1280 vertices [J].
Potocnik, Primoz ;
Spiga, Pablo ;
Verret, Gabriel .
JOURNAL OF SYMBOLIC COMPUTATION, 2013, 50 :465-477