A new preconditioning technique for the GMRES algorithm in power flow and P-V curve calculations

被引:8
作者
Chaniotis, D [1 ]
Pai, MA [1 ]
机构
[1] Univ Illinois, Dept Elect & Comp Engn, Urbana, IL 61801 USA
基金
美国国家科学基金会;
关键词
power flow; iterative methods; general minimal residual; LU factorization; voltage security; P-V curves;
D O I
10.1016/S0142-0615(02)00034-0
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The application of iterative methods for the solution of the linear system in the power flow problem and P-V curve calculations is investigated in this paper. The general minimal residual (GMRES) method and an improvement on this method proposed by Morgan (GMRES-E) are used and compared with the popular LU factorization. Furthermore, the fundamental problem of preconditioning is addressed here within the Framework of the power flow problem, Results are presented on 3887, 3911 and 4700 bus test systems based on real data. (C) 2002 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:239 / 245
页数:7
相关论文
共 13 条
[1]   OPTIMAL PARALLEL SOLUTION OF SPARSE TRIANGULAR SYSTEMS [J].
ALVARADO, FL ;
SCHREIBER, R .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1993, 14 (02) :446-460
[2]  
[Anonymous], VOLTAGE STABILITY EL
[3]  
Bacher R., 1996, PSCC. Proceedings of the Twelfth Power Systems Computation Conference, P453
[4]  
CHANIOTIS D, BULK POWER SYSTEM DY, V4
[5]  
Dag H., 1993, Proceedings 1993 North American Power Symposium, P274
[6]  
Decker I., 1991, P PICA C MAY, P245
[7]  
EDMOND C, 1997, J COMPUT APPL MATH, V86, P387
[8]   Solving the nonlinear power flow equations with an inexact Newton method using GMRES [J].
Flueck, AJ ;
Chiang, HD .
IEEE TRANSACTIONS ON POWER SYSTEMS, 1998, 13 (02) :267-273
[9]   A RESTARTED GMRES METHOD AUGMENTED WITH EIGENVECTORS [J].
MORGAN, RB .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1995, 16 (04) :1154-1171
[10]  
Pai M. A., 1992, Proceedings of the 1992 American Control Conference (IEEE Cat. No.92CH3072-6), P1644