Single photon counting compressive imaging using a generative model optimized via sampling and transfer learning

被引:12
作者
Gao, Wei [1 ]
Yan, Qiu-Rong [1 ]
Zhou, Hui-Lin [1 ]
Yang, Sheng-Tao [1 ]
Fang, Zhe-Yu [1 ]
Wang, Yu-Hao [1 ]
机构
[1] Nanchang Univ, Sch Informat Engn, Nanchang 330031, Jiangxi, Peoples R China
来源
OPTICS EXPRESS | 2021年 / 29卷 / 04期
基金
中国国家自然科学基金;
关键词
DETECTORS; RECONSTRUCTION; NETWORK;
D O I
10.1364/OE.413925
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Single photon counting compressive imaging, a combination of single-pixel-imaging and single-photon-counting technology, is provided with low cost and ultra-high sensitivity. However, it requires a long imaging time when applying traditional compressed sensing (CS) reconstruction algorithms. A deep-learning-based compressed reconstruction network refrains iterative computation while achieving efficient reconstruction. This paper proposes a compressed reconstruction network (OGTM) based on a generative model, adding sampling sub-network to achieve joint-optimization of sampling and generation for better reconstruction. To avoid the slow convergence caused by alternating training, initial weights of the sampling and generation sub-network are transferred from an autoencoder. The results indicate that the convergence speed and imaging quality are significantly improved. The OGTM validated on a single-photon compressive imaging system performs imaging experiments on specific and generalized targets. For specific targets, the results demonstrate that OGTM can quickly generate images from few measurements, and its reconstruction is better than the existing compressed sensing recovery algorithms, compensating defects of the generative models in compressed sensing. (c) 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
引用
收藏
页码:5552 / 5566
页数:15
相关论文
共 38 条
[1]  
[Anonymous], 2021, Adv. Neural Inf. Process. Syst.
[2]  
[Anonymous], 2018, ARXIV180201284
[3]   Model-Based Compressive Sensing [J].
Baraniuk, Richard G. ;
Cevher, Volkan ;
Duarte, Marco F. ;
Hegde, Chinmay .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2010, 56 (04) :1982-2001
[4]   AquEYE, a single photon counting photometer for astronomy [J].
Barbieri, C. ;
Naletto, G. ;
Occhipinti, T. ;
Facchinetti, C. ;
Verroi, E. ;
Giro, E. ;
Di Paola, A. ;
Billotta, S. ;
Zoccarato, P. ;
Bolli, P. ;
Tamburini, F. ;
Bonanno, G. ;
D'Onofrio, M. ;
Marchi, S. ;
Anzolin, G. ;
Capraro, I. ;
Messina, F. ;
Belluso, M. ;
Pernechele, C. ;
Zaccariotto, M. ;
Zampieri, L. ;
Da Deppo, V. ;
Fornasier, S. ;
Pedichini, F. .
JOURNAL OF MODERN OPTICS, 2009, 56 (2-3) :261-272
[5]   Iterative hard thresholding for compressed sensing [J].
Blumensath, Thomas ;
Davies, Mike E. .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2009, 27 (03) :265-274
[6]   Ghost imaging with a single detector [J].
Bromberg, Yaron ;
Katz, Ori ;
Silberberg, Yaron .
PHYSICAL REVIEW A, 2009, 79 (05)
[7]  
Candes EJ, 2005, l1-magic: Recovery of sparse signals via convex programming, V4, P16
[8]  
Dam JS, 2012, NAT PHOTONICS, V6, P788, DOI [10.1038/NPHOTON.2012.231, 10.1038/nphoton.2012.231]
[9]   SPARSITY ADAPTIVE MATCHING PURSUIT ALGORITHM FOR PRACTICAL COMPRESSED SENSING [J].
Do, Thong T. ;
Gan, Lu ;
Nguyen, Nam ;
Tran, Trac D. .
2008 42ND ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS AND COMPUTERS, VOLS 1-4, 2008, :581-+
[10]   Single-pixel imaging via compressive sampling [J].
Duarte, Marco F. ;
Davenport, Mark A. ;
Takhar, Dharmpal ;
Laska, Jason N. ;
Sun, Ting ;
Kelly, Kevin F. ;
Baraniuk, Richard G. .
IEEE SIGNAL PROCESSING MAGAZINE, 2008, 25 (02) :83-91