Chimera states in a class of hidden oscillatory networks

被引:8
作者
Asir, M. Paul [1 ]
Prasad, Awadhesh [2 ]
Kuznetsov, N., V [3 ,4 ,5 ]
Shrimali, Manish Dev [1 ]
机构
[1] Cent Univ Rajasthan, Dept Phys, Ajmer 305817, Rajasthan, India
[2] Delhi Univ, Dept Phys & Astrophys, Delhi 110007, India
[3] St Petersburg Univ, Dept Appl Cybernet, St Petersburg, Russia
[4] Univ Jyvaskyla, Dept Math Informat Technol, Jyvaskyla, Finland
[5] Russian Acad Sci, Inst Problems Mech Engn, St Petersburg, Russia
基金
俄罗斯科学基金会;
关键词
Chimera states; Hidden oscillation; Non-local coupling;
D O I
10.1007/s11071-021-06355-w
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
We have identified the chimera states in a class of non-locally coupled network of hidden oscillators without equilibrium, with one and two stable equilibria. All these cases exhibit hidden chaotic oscillations when isolated. We show that the choice of initial conditions is crucial to observe chimeras in these hidden oscillatory networks. The observed states are quantified and delineated with an aid of the incoherence measure. In addition, we computed the basin stability of the obtained chimeras and found that the models without equilibrium and with one equilibrium are diverging to infinity past certain interaction strength. Interestingly, for a no equilibrium model the separation of two incongruous units follows a power law as a function of coupling strength. Remarkably, we detected that the model with one stable equilibrium manifests multi-clustered chimera states owing to its multi-stability.
引用
收藏
页码:1645 / 1655
页数:11
相关论文
共 46 条
[1]   Chimera states in a ring of nonlocally coupled oscillators [J].
Abrams, DM ;
Strogatz, SH .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2006, 16 (01) :21-37
[2]   Chimera states for coupled oscillators [J].
Abrams, DM ;
Strogatz, SH .
PHYSICAL REVIEW LETTERS, 2004, 93 (17) :174102-1
[3]   Synchronization and chimera state in a mechanical system [J].
Carvalho, Phablo R. ;
Savi, Marcelo A. .
NONLINEAR DYNAMICS, 2020, 102 (02) :907-925
[4]   Extreme Multistability with Hidden Attractors in a Simplest Memristor-Based Circuit [J].
Chang, Hui ;
Li, Yuxia ;
Yuan, Fang ;
Chen, Guanrong .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2019, 29 (06)
[5]   Finding hidden attractors in improved memristor-based Chua's circuit [J].
Chen, Mo ;
Yu, Jingjing ;
Bao, Bo-Cheng .
ELECTRONICS LETTERS, 2015, 51 (06) :462-463
[6]   Four-Wing Hidden Attractors with One Stable Equilibrium Point [J].
Deng, Quanli ;
Wang, Chunhua ;
Yang, Linmao .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2020, 30 (06)
[7]   Traveling chimera states for coupled pendula [J].
Dudkowski, Dawid ;
Czolczynski, Krzysztof ;
Kapitaniak, Tomasz .
NONLINEAR DYNAMICS, 2019, 95 (03) :1859-1866
[8]   Hidden attractors in dynamical systems [J].
Dudkowski, Dawid ;
Jafari, Sajad ;
Kapitaniak, Tomasz ;
Kuznetsov, Nikolay V. ;
Leonov, Gennady A. ;
Prasad, Awadhesh .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2016, 637 :1-50
[9]   Effects of different initial conditions on the emergence of chimera states [J].
Faghani, Zahra ;
Arab, Zahra ;
Parastesh, Fatemeh ;
Jafari, Sajad ;
Perc, Matjaz ;
Slavinec, Mitja .
CHAOS SOLITONS & FRACTALS, 2018, 114 :306-311
[10]   Analysis of a power grid using a Kuramoto-like model [J].
Filatrella, G. ;
Nielsen, A. H. ;
Pedersen, N. F. .
EUROPEAN PHYSICAL JOURNAL B, 2008, 61 (04) :485-491