Iron Fluoride Nanoparticles Embedded in a Nitrogen and Oxygen Dual-doped 3D Porous Carbon Derived from Nori for High Rate Cathode in Lithium-ion Battery

被引:9
作者
Zhang, Qi [1 ]
Wu, Xian [1 ]
Gong, Shan [1 ]
Fan, Lishuang [2 ]
Zhang, Naiqing [1 ,2 ]
机构
[1] Harbin Inst Technol, Sch Chem & Chem Engn, Harbin 150001, Heilongjiang, Peoples R China
[2] Harbin Inst Technol, Acad Fundamental & Interdisciplinary Sci, State Key Lab Urban Water Resource & Environm, Harbin 150001, Heilongjiang, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Biomass carbon; Iron fluoride; Lithium ion battery; High rate; Large-scale; ELECTROCHEMICAL ENERGY-STORAGE; HIGH-PERFORMANCE; FEF3; NANOCRYSTALS; LI; NANOCOMPOSITE; FABRICATION; CONVERSION; SPECTROSCOPY; NANOWIRES; KINETICS;
D O I
10.1002/slct.201902478
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A unique nitrogen and oxygen dual-doped three-dimensional porous carbon derived from nori which can be produced in large-scale is used as conductive matrix to solve the problem of low conductivity of FeF3.0.33H(2)O cathode. Carbon with abundant channels combine with FeF3.0.33H(2)O nanoparticles to form a micro-nanostructure material. The combination of small nanoparticles and highly conductive three dimension porous carbon skeleton forms a high-speed ion and electron transport network which benefit the Li-storage performance of FeF3.0.33H(2)O. The as-prepared composite possess a capacity of 170, 157, and 104 mAh g(-1) at 1 C, 2 C, and 20 C in lithium-ion batteries which is much better than bulk FeF3.0.33H(2)O. Moreover, the capacity still maintains at 101 mAh g(-1) after 500 times charge/discharge at a current density of 5 C.
引用
收藏
页码:10334 / 10339
页数:6
相关论文
共 48 条
[1]   Fluoride based electrode materials for advanced energy storage devices [J].
Amatucci, Glenn G. ;
Pereira, Nathalie .
JOURNAL OF FLUORINE CHEMISTRY, 2007, 128 (04) :243-262
[2]   Carbon-metal fluoride nanocomposites -: Structure and electrochemistry of FeF3:C [J].
Badway, F ;
Pereira, N ;
Cosandey, F ;
Amatucci, GG .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2003, 150 (09) :A1209-A1218
[3]   Challenges Facing Lithium Batteries and Electrical Double-Layer Capacitors [J].
Choi, Nam-Soon ;
Chen, Zonghai ;
Freunberger, Stefan A. ;
Ji, Xiulei ;
Sun, Yang-Kook ;
Amine, Khalil ;
Yushin, Gleb ;
Nazar, Linda F. ;
Cho, Jaephil ;
Bruce, Peter G. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2012, 51 (40) :9994-10024
[4]   EELS spectroscopy of iron fluorides and FeFx/C nanocomposite electrodes used in Li-ion batteries [J].
Cosandey, Frederic ;
Al-Sharab, Jafar F. ;
Badway, Fadwa ;
Amatucci, Glenn G. ;
Stadelmann, Pierre .
MICROSCOPY AND MICROANALYSIS, 2007, 13 (02) :87-95
[5]   Mn-Doped Fe1-xMnxF3•0.33H2O/C Cathodes for Li-Ion Batteries: First-Principles Calculations and Experimental Study [J].
Ding, Jing ;
Zhou, Xiangyang ;
Wang, Hui ;
Yang, Juan ;
Gao, Yuning ;
Tang, Jingjing .
ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (04) :3852-3860
[6]   Crystal growth kinetics of iron fluoride trihydrate [J].
Forsberg, Kerstin M. ;
Rasmuson, Ake C. .
JOURNAL OF CRYSTAL GROWTH, 2006, 296 (02) :213-220
[7]   Recent advances in the research of polyanion-type cathode materials for Li-ion batteries [J].
Gong, Zhengliang ;
Yang, Yong .
ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (09) :3223-3242
[8]   Electrochemical energy storage in a sustainable modern society [J].
Goodenough, John B. .
ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (01) :14-18
[9]   Hierarchical Mesoporous Iron Fluoride with Superior Rate Performance for Lithium-Ion Batteries [J].
Han, Yangmei ;
Li, Huiyu ;
Li, Jinfeng ;
Si, Huinan ;
Zhu, Wentao ;
Qiu, Xinping .
ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (48) :32869-32874
[10]   Iron-based fluorides of tetragonal tungsten bronze structure as potential cathodes for Na-ion batteries [J].
Han, Yanlin ;
Hu, Jiulin ;
Yin, Congling ;
Zhang, Ye ;
Xie, Junjie ;
Yin, Dongguang ;
Li, Chilin .
JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (19) :7382-7389