Deep Convolutional Nets for Pulmonary Nodule Detection and Classification

被引:6
作者
Sun, Nannan [1 ,2 ]
Yang, Dongbao [1 ,2 ]
Fang, Shancheng [1 ,2 ]
Xie, Hongtao [3 ]
机构
[1] Chinese Acad Sci, Inst Informat Engn, Beijing, Peoples R China
[2] Univ Chinese Acad Sci, Sch Cyber Secur, Beijing, Peoples R China
[3] Univ Sci & Technol China, Sch Informat Sci & Technol, Hefei, Anhui, Peoples R China
来源
KNOWLEDGE SCIENCE, ENGINEERING AND MANAGEMENT, KSEM 2018, PT II | 2018年 / 11062卷
关键词
Computed tomography; Computer-aided detection; Convolutional networks; Lung cancer; Pulmonary nodule; COMPUTED-TOMOGRAPHY SCANS; FALSE-POSITIVE REDUCTION; AUTOMATIC DETECTION; LUNG; ALGORITHMS; IMAGES;
D O I
10.1007/978-3-319-99247-1_17
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this study, a novel pulmonary nodule detection and classification system with 2D convolutional neural networks is proposed. The objective is to effectively address the challenges in lung cancer diagnosis and early treatment. The system consists of two stages: nodule detection and false positive reduction. For nodule detection, we introduce a detection framework based on Faster R-CNN, which integrates a deconvolution layer to enlarge the feature map and two region proposal networks to concatenate the useful information from the lower layer. In order to ensure high sensitivity, the conditions at this stage are simple and loose. Therefore, a boosting architecture based on 2D CNNs is designed for false positive reduction. In order to improve classification accuracy, every training model pays attention to those data that are not easy to classify. In experiments, our method is conducted on LUNA16 challenge. The sensitivity of nodule candidate detection achieves 86.42%. For false positive reduction, sensitivities of 73.4% and 74.4% at 1/8 and 1/4 false positives per scan are obtained, respectively. It proves that our method can maintain a satisfactory sensitivity even with extremely low false positive rates.
引用
收藏
页码:197 / 208
页数:12
相关论文
共 26 条
  • [1] Reduced Lung-Cancer Mortality with Low-Dose Computed Tomographic Screening
    Aberle, Denise R.
    Adams, Amanda M.
    Berg, Christine D.
    Black, William C.
    Clapp, Jonathan D.
    Fagerstrom, Richard M.
    Gareen, Ilana F.
    Gatsonis, Constantine
    Marcus, Pamela M.
    Sicks, JoRean D.
    [J]. NEW ENGLAND JOURNAL OF MEDICINE, 2011, 365 (05) : 395 - 409
  • [2] [Anonymous], 2016, Lecture Notes in Computer Science, DOI [10.1007/978-3-319-46493-0_38, DOI 10.1007/978-3-319-46493-0_38]
  • [3] [Anonymous], 2017, IMPEDANCE CHARACTERI
  • [4] The Lung Image Database Consortium, (LIDC) and Image Database Resource Initiative (IDRI): A Completed Reference Database of Lung Nodules on CT Scans
    Armato, Samuel G., III
    McLennan, Geoffrey
    Bidaut, Luc
    McNitt-Gray, Michael F.
    Meyer, Charles R.
    Reeves, Anthony P.
    Zhao, Binsheng
    Aberle, Denise R.
    Henschke, Claudia I.
    Hoffman, Eric A.
    Kazerooni, Ella A.
    MacMahon, Heber
    van Beek, Edwin J. R.
    Yankelevitz, David
    Biancardi, Alberto M.
    Bland, Peyton H.
    Brown, Matthew S.
    Engelmann, Roger M.
    Laderach, Gary E.
    Max, Daniel
    Pais, Richard C.
    Qing, David P-Y
    Roberts, Rachael Y.
    Smith, Amanda R.
    Starkey, Adam
    Batra, Poonam
    Caligiuri, Philip
    Farooqi, Ali
    Gladish, Gregory W.
    Jude, C. Matilda
    Munden, Reginald F.
    Petkovska, Iva
    Quint, Leslie E.
    Schwartz, Lawrence H.
    Sundaram, Baskaran
    Dodd, Lori E.
    Fenimore, Charles
    Gur, David
    Petrick, Nicholas
    Freymann, John
    Kirby, Justin
    Hughes, Brian
    Casteele, Alessi Vande
    Gupte, Sangeeta
    Sallam, Maha
    Heath, Michael D.
    Kuhn, Michael H.
    Dharaiya, Ekta
    Burns, Richard
    Fryd, David S.
    [J]. MEDICAL PHYSICS, 2011, 38 (02) : 915 - 931
  • [5] Multilevel Contextual 3-D CNNs for False Positive Reduction in Pulmonary Nodule Detection
    Dou, Qi
    Chen, Hao
    Yu, Lequan
    Qin, Jing
    Heng, Pheng-Ann
    [J]. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2017, 64 (07) : 1558 - 1567
  • [6] Learning Spatiotemporal Features with 3D Convolutional Networks
    Du Tran
    Bourdev, Lubomir
    Fergus, Rob
    Torresani, Lorenzo
    Paluri, Manohar
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, : 4489 - 4497
  • [7] Fang S, 2017, MULTIMEDIA TOOLS APP, V76, P1
  • [8] Automatic detection of subsolid pulmonary nodules in thoracic computed tomography images
    Jacobs, Colin
    van Rikxoort, Eva M.
    Twellmann, Thorsten
    Scholten, Ernst Th.
    de Jong, Pim A.
    Kuhnigk, Jan-Martin
    Oudkerk, Matthijs
    de Koning, Harry J.
    Prokop, Mathias
    Schaefer-Prokop, Cornelia
    van Ginneken, Bram
    [J]. MEDICAL IMAGE ANALYSIS, 2014, 18 (02) : 374 - 384
  • [9] Jia Ding, 2017, Medical Image Computing and Computer Assisted Intervention MICCAI 2017. 20th International Conference. Proceedings: LNCS 10435, P559, DOI 10.1007/978-3-319-66179-7_64
  • [10] ImageNet Classification with Deep Convolutional Neural Networks
    Krizhevsky, Alex
    Sutskever, Ilya
    Hinton, Geoffrey E.
    [J]. COMMUNICATIONS OF THE ACM, 2017, 60 (06) : 84 - 90