Spectral clustering based on similarity and dissimilarity criterion

被引:12
作者
Wang, Bangjun [1 ,2 ]
Zhang, Li [2 ]
Wu, Caili [2 ]
Li, Fan-zhang [2 ]
Zhang, Zhao [2 ]
机构
[1] Beijing Jiaotong Univ, Beijing 100044, Peoples R China
[2] Soochow Univ, Suzhou 215006, Jiangsu, Peoples R China
关键词
Spectral clustering; Normalized cut; Similarity criterion; Dissimilarity criterion;
D O I
10.1007/s10044-015-0515-x
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The clustering assumption is to maximize the within-cluster similarity and simultaneously to minimize the between-cluster similarity for a given unlabeled dataset. This paper deals with a new spectral clustering algorithm based on a similarity and dissimilarity criterion by incorporating a dissimilarity criterion into the normalized cut criterion. The within-cluster similarity and the between-cluster dissimilarity can be enhanced to result in good clustering performance. Experimental results on toy and real-world datasets show that the new spectral clustering algorithm has a promising performance.
引用
收藏
页码:495 / 506
页数:12
相关论文
共 25 条
[1]   A taxonomy for spatiotemporal connectionist networks revisited:: The unsupervised case [J].
Barreto, GD ;
Araújo, AFR .
NEURAL COMPUTATION, 2003, 15 (06) :1255-1320
[2]   Some new indexes of cluster validity [J].
Bezdek, JC ;
Pal, NR .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 1998, 28 (03) :301-315
[3]   Spectral clustering: A semi-supervised approach [J].
Chen, Weifu ;
Feng, Guocan .
NEUROCOMPUTING, 2012, 77 (01) :229-242
[4]   Parallel Spectral Clustering in Distributed Systems [J].
Chen, Wen-Yen ;
Song, Yangqiu ;
Bai, Hongjie ;
Lin, Chih-Jen ;
Chang, Edward Y. .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2011, 33 (03) :568-586
[5]   CLUSTER SEPARATION MEASURE [J].
DAVIES, DL ;
BOULDIN, DW .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1979, 1 (02) :224-227
[6]  
Demsar J, 2006, J MACH LEARN RES, V7, P1
[7]   A min-max cut algorithm for graph partitioning and data clustering [J].
Ding, CHQ ;
He, XF ;
Zha, HY ;
Gu, M ;
Simon, HD .
2001 IEEE INTERNATIONAL CONFERENCE ON DATA MINING, PROCEEDINGS, 2001, :107-114
[8]  
Duda RO., 1973, PATTERN CLASSIFICATI
[9]  
Fanti C, 2004, ADV NEUR IN, V16, P1603