The Carnot-Caratheodory Distance and the Infinite Laplacian

被引:10
作者
Bieske, Thomas [3 ]
Dragoni, Federica [2 ]
Manfredi, Juan [1 ]
机构
[1] Univ Pittsburgh, Dept Math, Pittsburgh, PA 15260 USA
[2] Univ London Imperial Coll Sci Technol & Med, Dept Math, London SW7 2AZ, England
[3] Univ S Florida, Dept Math, Tampa, FL 33620 USA
关键词
Carnot-Caratheodory spaces; Infinite Laplacian; Viscosity solutions; LIPSCHITZ EXTENSIONS; HARMONIC-FUNCTIONS;
D O I
10.1007/s12220-009-9087-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In a"e (n) equipped with the Euclidean metric, the distance from the origin is smooth and infinite harmonic everywhere except the origin. Using geodesics, we find a geometric characterization for when the distance from the origin in an arbitrary Carnot-Carath,odory space is a viscosity infinite harmonic function at a point outside the origin. We show that at points in the Heisenberg group and Grushin plane where this condition fails, the distance from the origin is not a viscosity infinite harmonic subsolution. In addition, the distance function is not a viscosity infinite harmonic supersolution at the origin.
引用
收藏
页码:737 / 754
页数:18
相关论文
共 17 条
[1]  
[Anonymous], 1996, Progress in Mathematics
[2]  
Beatrous FH, 2005, CONTEMP MATH, V370, P1
[3]   Lipschitz extensions on generalized Grushin spaces [J].
Bieske, T .
MICHIGAN MATHEMATICAL JOURNAL, 2005, 53 (01) :3-31
[4]   On ∞-harmonic functions on the Heisenberg group [J].
Bieske, T .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2002, 27 (3-4) :727-761
[5]  
Bieske T, 2008, MATEMATICHE, V63, P19
[6]   PROPERTIES OF INFINITE HARMONIC FUNCTIONS ON GRUSHIN-TYPE SPACES [J].
Bieske, Thomas .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2009, 39 (03) :729-756
[7]  
Burago D., 2001, A Course in Metric Geometry, DOI [10.1090/gsm/033, DOI 10.1090/GSM/033]
[8]  
Champion T, 2007, J CONVEX ANAL, V14, P515
[9]  
Crandall MG, 2001, CALC VAR PARTIAL DIF, V13, P123
[10]   Metric Hopf-Lax formula with semicontinuous data [J].
Dragoni, Federica .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2007, 17 (04) :713-729