Explicit estimates for the Riemann zeta function

被引:19
作者
Cheng, YF [1 ]
Graham, SW [1 ]
机构
[1] Cent Michigan Univ, Dept Math, Mt Pleasant, MI 48859 USA
关键词
exponential sums; van der Corput's method; upper bound; the Riemann zeta function; explicit estimate;
D O I
10.1216/rmjm/1181069799
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We apply van der Corput's method of exponential sums to obtain explicit upper bounds for the Riemann zeta function on the line sigma = 1/2. For example, we prove that if t > e, then \ zeta(1/2 + it)\ less than or equal to 3t(1/6)log t. These results will be used in an application on primes to short intervals [4].
引用
收藏
页码:1261 / 1280
页数:20
相关论文
共 15 条
[1]  
[Anonymous], 1993, BASIC ANAL NUMBER TH, DOI DOI 10.1007/978-3-642-58018-5
[2]  
Chandrasekharan K., 1970, ARITHMETICAL FUNCTIO
[3]  
CHENG YF, 2000, EXPLICIT ESTIMATE PR
[4]  
CHENG YF, 1995, THESIS U GEORGIA
[5]   An explicit upper bound for the Riemann zeta-function near the line σ=1 [J].
Cheng, YY .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1999, 29 (01) :115-140
[6]  
Graham S.W., 1991, VANDERCORPUTS METHOD
[7]   Explicit bounds on exponential sums and the scarcity of squarefree binomial coefficients [J].
Granville, A ;
Ramare, O .
MATHEMATIKA, 1996, 43 (85) :73-107
[8]  
HUXLEY MN, 1993, P LOND MATH SOC, V66, P1
[9]  
Ivic A., 1985, THEORY RIEMANN ZETA
[10]  
Kress R, 1998, NUMERICAL ANAL