CO2 Hydrogenation to Light Olefins Over In2O3/SAPO-34 and Fe-Co/K-Al2O3 Composite Catalyst

被引:31
作者
Numpilai, Thanapha [1 ,2 ]
Kahadit, Supitchaya [1 ]
Witoon, Thongthai [1 ,2 ,3 ]
Ayodele, Bamidele Victor [4 ]
Cheng, Chin Kui [5 ]
Siri-Nguan, Nuchanart [6 ]
Sornchamni, Thana [6 ]
Wattanakit, Chularat [7 ]
Chareonpanich, Metta [1 ,2 ]
Limtrakul, Jumras [3 ]
机构
[1] Kasetsart Univ, Ctr Excellence Petrochem & Mat Technol, Dept Chem Engn, Fac Engn, Bangkok 10900, Thailand
[2] Kasetsart Univ, Res Network NANOTEC KU NanoCatalysts & NanoMat Su, Bangkok 10900, Thailand
[3] Vidyasirimedhi Inst Sci & Technol, Sch Mol Sci & Engn, Dept Mat Sci & Engn, Rayong 21210, Thailand
[4] Univ Tenaga Nas, Inst Energy Policy & Res, Jalan IKRAM UNITEN, Kajang 43000, Selangor, Malaysia
[5] Khalifa Univ, Dept Chem Engn, Coll Engn, POB 127788, Abu Dhabi, U Arab Emirates
[6] PTT Publ Co Ltd, Innovat Inst, Phra Nakhon Si Ayutthaya 13170, Thailand
[7] Vidyasirimedhi Inst Sci & Technol, Sch Energy Sci & Engn, Dept Chem & Biomol Engn, Rayong 21210, Thailand
关键词
CO2; hydrogenation; Light olefins; Fe-based catalysts; In2O3; SAPO-34; Catalysts bed configuration; FISCHER-TROPSCH SYNTHESIS; MN PROMOTER; METHANOL; FE; CONVERSION; SELECTIVITY; CARBON; STABILITY; INSIGHTS; IRON;
D O I
10.1007/s11244-021-01412-5
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Direct CO2 conversion to light olefins offers a chance to reduce CO2 emission with generating the revenue. However, a lack of efficient catalysts is a barrier for promoting this technology to an industrial scale. Here, we report a new catalytic system using a composite catalyst containing In2O3/SAPO-34 and Fe-Co/K-Al2O3 to enhance the light olefins yield. The effect of catalysts bed configuration including a physical mixture of In2O3/SAPO-34 with Fe-Co/K-Al2O3 (M-InS/Fe-Co), a dual-layer packing of In2O3/SAPO-34 followed by Fe-Co/K-Al2O3 (T-InS/B-FeCo) and a dual-layer packing of Fe-Co/K-Al2O3 above In2O3/SAPO-34 (T-FeCo/B-InS) is investigated. The M-InS/Fe-Co and T-FeCo/B-InS catalysts show a light olefins yield of 11.5 and 16.2% which are lower than that (18.9%) of the single Fe-Co/K-Al2O3 catalyst. A drastic reduction in the BET surface area (42 m(2) g(-1)) of M-InS/Fe-Co catalyst compared to its theoretical value of 198 m(2) g(-1) is observed, suggesting the pores blockage. The T-InS/B-FeCo composite catalyst achieves a state-of the art light olefins yield of 21.5% due to a selective CO2 conversion to light olefins over In2O3/SAPO-34 and a highly active CO2 conversion to hydrocarbon over Fe-Co/K-Al2O3 which further converts the remaining CO2 from the former catalyst bed to light olefins and other hydrocarbon products until equilibrium CO2 conversion is reached.
引用
收藏
页码:316 / 327
页数:12
相关论文
共 51 条
[1]   Effect of reaction conditions on the lifetime of SAPO-34 catalysts in methanol to olefins process - A review [J].
Ahmad, Muhammad Sheraz ;
Cheng, Chin Kui ;
Bhuyar, Prakash ;
Atabani, A. E. ;
Pugazhendhi, Arivalagan ;
Nguyen Thuy Lan Chi ;
Witoon, Thongthai ;
Lim, Jun Wei ;
Juan, Joon Ching .
FUEL, 2021, 283
[2]   Tuning adsorption properties of GaxIn2-xO3 catalysts for enhancement of methanol synthesis activity from CO2 hydrogenation at high reaction temperature [J].
Akkharaphatthawon, Naphattanun ;
Chanlek, Narong ;
Cheng, Chin Kui ;
Chareonpanich, Metta ;
Limtrakul, Jumras ;
Witoon, Thongthai .
APPLIED SURFACE SCIENCE, 2019, 489 :278-286
[3]   Catalytic Cracking of Arab Super Light Crude Oil to Light Olefins: An Experimental and Kinetic Study [J].
Al-Khattaf, Sulaiman S. ;
Ali, Syed A. .
ENERGY & FUELS, 2018, 32 (02) :2234-2244
[4]   The changing nature of the active site of Cu-Zn-Zr catalysts for the CO2 hydrogenation reaction to methanol [J].
Bonura, G. ;
Cordaro, M. ;
Cannilla, C. ;
Arena, F. ;
Frusteri, F. .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2014, 152 :152-161
[5]   Tuning interaction of surface-adsorbed species over Fe/K-Al2O3 modified with transition metals (Cu, Mn, V, Zn or Co) on light olefins production from CO2 hydrogenation [J].
Chaipraditgul, Nawapat ;
Numpilai, Thanapha ;
Cheng, Chin Kui ;
Siri-Nguan, Nuchanart ;
Sornchamni, Thana ;
Wattanakit, Chularat ;
Limtrakul, Jumras ;
Witoon, Thongthai .
FUEL, 2021, 283
[6]   Fundamental study of hierarchical millisecond gas-phase catalytic cracking process for enhancing the production of light olefins from vacuum residue [J].
Che, Yuanjun ;
Yuan, Meng ;
Qiao, Yingyun ;
Liu, Qin ;
Zhang, Jinhong ;
Tian, Yuanyu .
FUEL, 2019, 237 :1-9
[7]   Hydrogenation of CO2 to light olefins on CuZnZr@(Zn-)SAPO-34 catalysts: Strategy for product distribution [J].
Chen, Jingyu ;
Wang, Xu ;
Wu, Dakai ;
Zhang, Jianli ;
Ma, Qingxiang ;
Gao, Xinhua ;
Lai, Xiaoyong ;
Xia, Hongqiang ;
Fan, Subing ;
Zhao, Tian-Sheng .
FUEL, 2019, 239 :44-52
[8]   Direct conversion of CO2 into methanol over promoted indium oxide-based catalysts [J].
Chou, Chen-Yu ;
Lobo, Raul F. .
APPLIED CATALYSIS A-GENERAL, 2019, 583
[9]   Selective Transformation of CO2 and H2 into Lower Olefins over In2O3-ZnZrOx/SAPO-34 Bifunctional Catalysts [J].
Dang, Shanshan ;
Li, Shenggang ;
Yang, Chengguang ;
Chen, Xinqing ;
Li, Xiaopeng ;
Zhong, Liangshu ;
Gao, Peng ;
Sun, Yuhan .
CHEMSUSCHEM, 2019, 12 (15) :3582-3591
[10]   Role of zirconium in direct CO2 hydrogenation to lower olefins on oxide/zeolite bifunctional catalysts [J].
Dang, Shanshan ;
Gao, Peng ;
Liu, Ziyu ;
Chen, Xinqing ;
Yang, Chengguang ;
Wang, Hui ;
Zhong, Liangshu ;
Li, Shenggang ;
Sun, Yuhan .
JOURNAL OF CATALYSIS, 2018, 364 :382-393