Maximum a posterior based level set approach for image segmentation with intensity inhomogeneity

被引:9
|
作者
Zhu, Jiang [1 ,2 ]
Zeng, Yan [1 ,2 ]
Xu, Haixia [2 ]
Li, Jianqi [2 ,3 ]
Tian, Shujuan [1 ]
Liu, Haolin [1 ]
机构
[1] Xiangtan Univ, Key Lab Hunan Prov Internet Things & Informat Sec, Xiangtan 411105, Peoples R China
[2] Xiangtan Univ, Coll Automat & Elect Informat, Xiangtan 411105, Peoples R China
[3] Hunan Univ Arts & Sci, Hunan Prov Cooperat Innovat Ctr Construct & Dev D, Changde, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Maximum a posterior; Level set method; Intensity inhomogeneity; Image segmentation; MODEL; ALGORITHM; EVOLUTION; FEATURES;
D O I
10.1016/j.sigpro.2020.107896
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Intensity inhomogeneity is an unavoidable obstacle in image segmentation, which causes inaccuracy in object extraction. Generally, the approach to tackling intensity inhomogeneity is constructing a bias field descriptor which may lead to corruption of image intensity. In this paper, we propose a novel level set model based on maximum a posterior principle. To properly collect the objectslocal information, the proposed method utilizes Gaussian distribution to model the conditional probability of image intensity within specific patches. To construct the prior information, we then model the intensity inhomogeneity as Gaussian distribution whose mean is 1 and whose variance is the same as image intensity. Finally, the maximum a posterior based energy functional combined local image information and adequate prior information is defined. In addition, our method can be adopted and transformed into the state-of-the-art methods. To validate its effectiveness and performance, we compare our method with popular deep learning methods and classical level set methods. The roubstness analysis of initial contour, noise and intensity bias is given. Experimental results show our method achieves outstanding adaptability and stability. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Local Features Based Level Set Method for Segmentation of Images with Intensity Inhomogeneity
    Min, Hai
    Xia, Li
    Pan, Qianqian
    Fu, Hao
    Wang, Hongzhi
    Li, Hai
    COMPUTER VISION, PT II, 2017, 772 : 498 - 508
  • [22] Local and Global Active Contour Model for Image Segmentation With intensity Inhomogeneity
    Cai, Qing
    Liu, Huiying
    Qian, Yiming
    Li, Jing
    Duan, Xiaojun
    Yang, Yee-Hong
    IEEE ACCESS, 2018, 6 : 54224 - 54240
  • [23] Image Segmentation for Intensity Inhomogeneity in Presence of High Noise
    Ali, Haider
    Rada, Lavdie
    Badshah, Noor
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2018, 27 (08) : 3729 - 3738
  • [24] A level set method based on additive bias correction for image segmentation
    Weng, Guirong
    Dong, Bin
    Lei, Yu
    EXPERT SYSTEMS WITH APPLICATIONS, 2021, 185
  • [25] A novel dual minimization based level set method for image segmentation
    Min, Hai
    Wang, Xiao-Feng
    Huang, De-Shuang
    Jia, Wei
    NEUROCOMPUTING, 2016, 214 : 910 - 926
  • [26] A novel level set approach for image segmentation with landmark constraints
    Pan, Huizhu
    Liu, Wanquan
    Li, Ling
    Zhou, Guanglu
    OPTIK, 2019, 182 : 257 - 268
  • [27] An Image Segmentation Method Based on Improved Regularized Level Set Model
    Sun, Lin
    Meng, Xinchao
    Xu, Jiucheng
    Zhang, Shiguang
    APPLIED SCIENCES-BASEL, 2018, 8 (12):
  • [28] A discrete level set approach to image segmentation
    De Santis A.
    Iacoviello D.
    Signal, Image and Video Processing, 2007, 1 (4) : 303 - 320
  • [29] An efficient level set method for simultaneous intensity inhomogeneity correction and segmentation of MR images
    Ivanovska, Tatyana
    Laqua, Rene
    Wang, Lei
    Schenk, Andrea
    Yoon, Jeong Hee
    Hegenscheid, Katrin
    Voelzke, Henry
    Liebscher, Volkmar
    COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2016, 48 : 9 - 20
  • [30] Convexity Shape Prior for Level Set-Based Image Segmentation Method
    Yan, Shi
    Tai, Xue-Cheng
    Liu, Jun
    Huang, Hai-Yang
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 29 : 7141 - 7152