Simulation and analysis of electromagnetic in-plane microgenerator

被引:2
作者
Pan, C. T. [1 ,2 ]
Chen, Y. J. [1 ,2 ]
Shen, S. C. [3 ]
机构
[1] Natl Sun Yat Sen Univ, Dept Mech & Electromech Engn, Kaohsiung 804, Taiwan
[2] Natl Sun Yat Sen Univ, Ctr Nanosci & Nanotechnol, Kaohsiung 804, Taiwan
[3] Natl Cheng Kung Univ, Dept Syst & Naval Mechatron Engn, Tainan 701, Taiwan
来源
JOURNAL OF MICRO-NANOLITHOGRAPHY MEMS AND MOEMS | 2009年 / 8卷 / 03期
关键词
micro-generator; LTCC; multipolar; multilayer; Nd/Fe/B; finite element; POWER GENERATOR; AXIAL-FLUX; DESIGN; PERFORMANCE; FABRICATION; MICROSCALE;
D O I
10.1117/1.3152363
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This study focuses on the design, simulation, fabrication, and test of the in-plane microgenerator to obtain a high-power output. The microgenerator comprises multilayer planar silver (Ag) microcoil of low-temperature cofired ceramics (LTCC) and multipole hard magnet of Nd/Fe/B (neodymium, iron, and boron). The LTCC process is an approach that saves costs and time to fabricate the microcoil. The multipole hard magnet of Nd/Fe/B provides the large magnetic energy product to contribute to the power. Finite element simulations have been carried out using COMSOL Multiphysics (R) to observe electromagnetic information. The induced voltages of coils in different basic geometric shapes, including square-shaped coils, circle-shaped coils, and sector-shaped coils, are simulated separately in this study. A prototype of the microgenerator is <1 cm(3) in volume size. The simulated result can be compared to the experimental one. The results of simulation reveal that this microgenerator with a sector-shaped microcoil generates a maximum effective value of the induced voltage of 232.7 mV and the power of 2.5 mW. And the 1-mu m gap between the microcoil and the magnet achieved is the value that is mentioned above. Experimental measurement shows close agreement with finite element simulations. (C) 2009 Society of Photo-Optical Instrumentation Engineers. [DOI: 10.1117/1.3152363]
引用
收藏
页数:8
相关论文
共 27 条
[1]   Review of microscale magnetic power generation [J].
Arnold, David P. .
IEEE TRANSACTIONS ON MAGNETICS, 2007, 43 (11) :3940-3951
[2]   Design optimization of an 8 W, microscale, axial-flux, permanent-magnet generator [J].
Arnold, David P. ;
Herrault, Florian ;
Zana, Iulica ;
Galle, Preston ;
Park, Jin-Woo ;
Das, Sauparna ;
Lang, Jeffrey H. ;
Allen, Mark G. .
JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2006, 16 (09) :S290-S296
[3]  
ARNOLD DP, 2005, 13 INT C SOL STAT SE, V1, P701
[4]   A micro electromagnetic generator for vibration energy harvesting [J].
Beeby, S. P. ;
Torah, R. N. ;
Tudor, M. J. ;
Glynne-Jones, P. ;
O'Donnell, T. ;
Saha, C. R. ;
Roy, S. .
JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2007, 17 (07) :1257-1265
[5]   A MEMS-based piezoelectric power generator for low frequency vibration energy harvesting [J].
Fang, HB ;
Liu, JQ ;
Xu, ZY ;
Dong, L ;
Chen, D ;
Cai, BC ;
Liu, Y .
CHINESE PHYSICS LETTERS, 2006, 23 (03) :732-734
[6]   Fabrication and performance of MEMS-based piezoelectric power generator for vibration energy harvesting [J].
Fang, Hua-Bin ;
Liu, Jing-Quan ;
Xu, Zheng-Yi ;
Dong, Lu ;
Wang, Li ;
Chen, Di ;
Cai, Bing-Chu ;
Liu, Yue .
MICROELECTRONICS JOURNAL, 2006, 37 (11) :1280-1284
[7]   Towards a piezoelectric vibration-powered microgenerator [J].
Glynne-Jones, P ;
Beeby, SP ;
White, NM .
IEE PROCEEDINGS-SCIENCE MEASUREMENT AND TECHNOLOGY, 2001, 148 (02) :68-72
[8]  
Herrault F., 2007, TRANSDUCERS '07 & Eurosensors XXI. 2007 14th International Conference on Solid-State Sensors, Actuators and Microsystems, P899, DOI 10.1109/SENSOR.2007.4300276
[9]  
Holmes J, 2005, LIT HIST-THIRD SER, V14, P1
[10]   Design, prototyping, and analysis of a low cost axial-flux coreless permanent-magnet generator [J].
Hosseini, Seyed Mohsen ;
Agha-Mirsalim, Mojtaba ;
Mirzaei, Mehran .
IEEE TRANSACTIONS ON MAGNETICS, 2008, 44 (01) :75-80