Gradient electrodeposition enables high-throughput fabrication and screening of alloy anodes for high-energy lithium-ion batteries

被引:13
作者
Zhong, C. [1 ,2 ,3 ]
Guo, C. [1 ,2 ]
Jin, X. [1 ,2 ]
Li, Y. [1 ,2 ]
Chen, J. [1 ,2 ]
Zhang, S. [1 ,2 ]
Lu, Y. [4 ]
Zhang, H. [1 ,2 ,5 ]
Pan, F. [3 ]
机构
[1] Nanjing Univ, Collaborat Innovat Ctr Adv Microstruct, Natl Lab Solid State Microstruct, Nanjing 210093, Peoples R China
[2] Nanjing Univ, Coll Engn & Appl Sci, Nanjing 210093, Peoples R China
[3] Peking Univ, Shenzhen Grad Sch, Sch Adv Mat, Shenzhen 518055, Peoples R China
[4] Suzhou Univ Sci & Technol, Sch Chem Biol & Mat Engn, Suzhou 215009, Peoples R China
[5] Nankai Univ, Minist Educ, Key Lab Adv Energy Mat Chem, Tianjin 300071, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Lithium-ion batteries; Gradient electrodeposition; High-throughput fabrication; Screening; Sn-Co-Sb alloy anode; ELECTROCHEMICAL PROPERTIES; PERFORMANCE; CU; SB; NANOCOMPOSITE;
D O I
10.1016/j.mtener.2020.100528
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Alloy anodes provide high capacity for high-energy lithium-ion batteries. Multi-element alloys require high-throughput fabrication technologies to facilitate the screening of alloy composition, morphologies, and structures. Here, we report a gradient electrodeposition method to prepare Sn-Co-Sb alloy anodes with varied Sn:Co:Sb ratios and demonstrate the effectiveness of gradient electrodeposition on alloy anode development. Using this technology, we can vary each metal element to form a gradient distribution in one direction by tilting the sample alternatively during each electrodeposition. Such gradient electrodeposition realizes the complex composition of Sn-Co-Sb alloys in one large sample, enabling high-throughput fabrication simultaneously. After annealing, the obtained Sn-Co-Sb alloy forms varied phases such as Sn, SnSb, and CoSn2. It is noted that the elemental ratio has a significant influence on the microstructures and electrochemical performances of the deposited Sn-Co-Sb alloy. The Sn-Co-Sb alloy with a ratio of 71.3:12.8:15.9 delivers a high reversible capacity of 671.8 mAh g(-1) and simultaneously shows excellent cyclability, which can be attributed to the optimal morphology structure and Sn:Co:Sb ratio. The optimized alloy can maintain a high capacity without sacrificing cyclability, which was usually limited by strain accumulation caused by high capacity. This work reports a general gradient electrodeposition technology for high-throughput screening of alloy anodes, which can also be applied to other alloy applications. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:8
相关论文
共 42 条
[1]   "Confined Lowest Energy Structure Fragments (CLESFs)" Hypothesis for Protein Structure and the "Stone Age" of Protein Prebiotic Evolution [J].
Cao, Aoneng .
ACTA PHYSICO-CHIMICA SINICA, 2020, 36 (01)
[2]   Flake structured SnSbCo/MCMB/C composite as high performance anodes for lithium ion battery [J].
Chen, Xiaoqiu ;
Ru, Qiang ;
Zhao, Doudou ;
Mo, Yudi ;
Hu, Shejun .
JOURNAL OF ALLOYS AND COMPOUNDS, 2015, 646 :794-802
[3]   Better Cycling Performances of Bulk Sb in Na-Ion Batteries Compared to Li-Ion Systems: An Unexpected Electrochemical Mechanism [J].
Darwiche, Ali ;
Marino, Cyril ;
Sougrati, Moulay T. ;
Fraisse, Bernard ;
Stievano, Lorenzo ;
Monconduit, Laure .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (51) :20805-20811
[4]   Cooperative enhancement of capacities in nanostructured SnSb/carbon nanotube network nanocomposite as anode for lithium ion batteries [J].
Fan, Shufen ;
Sun, Ting ;
Rui, Xianhong ;
Yan, Qingyu ;
Hng, Huey Hoon .
JOURNAL OF POWER SOURCES, 2012, 201 :288-293
[5]   Electrochemical synthesis and lithium storage properties of three-dimensional porous Sn-Co alloy/CNT composite [J].
Fan, Xiao-Yong ;
Shi, Yong-Xin ;
Wang, Jing-Jing ;
Wang, Jing ;
Xu, Lei ;
Gou, Lei ;
Li, Dong-Lin .
IONICS, 2013, 19 (11) :1551-1558
[6]   Sn-Co alloy anode using porous Cu as current collector for lithium ion battery [J].
Fan, Xiao-Yong ;
Ke, Fu-Sheng ;
Wei, Guo-Zhen ;
Huang, Ling ;
Sun, Shi-Gang .
JOURNAL OF ALLOYS AND COMPOUNDS, 2009, 476 (1-2) :70-73
[7]   Electrodeposition and electrochemical investigation of thin film Sn-Co-Ni alloy anode for lithium-ion batteries [J].
Gnanamuthu, R. M. ;
Lee, Chang Woo .
MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS, 2011, 176 (16) :1329-1332
[8]   Preparation of Sn-Co alloy electrode for lithium ion batteries by pulse electrodeposition [J].
Gul, H. ;
Uysal, M. ;
Cetinkaya, T. ;
Guler, M. O. ;
Alp, A. ;
Akbulut, H. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2014, 39 (36) :21414-21419
[9]   High-rate, long-life Ni-Sn nanostructured electrodes for lithium-ion batteries [J].
Hassoun, Jusef ;
Panero, Stefania ;
Simon, Patrice ;
Taberna, Pierre Louis ;
Scrosati, Bruno .
ADVANCED MATERIALS, 2007, 19 (12) :1632-+
[10]   A SnSb-C nanocomposite as high performance electrode for lithium ion batteries [J].
Hassoun, Jusef ;
Derrien, Gaelle ;
Panero, Stefania ;
Scrosati, Bruno .
ELECTROCHIMICA ACTA, 2009, 54 (19) :4441-4444