Research on Feature Extraction Method of Engine Misfire Fault Based on Signal Sparse Decomposition

被引:5
|
作者
Du, Canyi [1 ]
Jiang, Fei [2 ]
Ding, Kang [2 ]
Li, Feng [1 ]
Yu, Feifei [1 ]
机构
[1] Guangdong Polytech Normal Univ, Sch Automobile & Transportat Engn, Guangzhou 510450, Peoples R China
[2] South China Univ Technol, Sch Mech & Automot Engn, Guangzhou 510640, Peoples R China
关键词
MODE DECOMPOSITION; DIAGNOSIS;
D O I
10.1155/2021/6650932
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Engine vibration signals are easy to be interfered by other noise, causing feature signals that represent its operating status get submerged and further leading to difficulty in engine fault diagnosis. In addition, most of the signals utilized to verify the extraction method are derived from numerical simulation, which are far away from the real engine signals. To address these problems, this paper combines the priority of signal sparse decomposition and engine finite element model to research a novel feature extraction method for engine misfire diagnosis. Firstly, in order to highlight resonance regions related with impact features, the vibration signal is performed with a high-pass filter process. Secondly, the dictionary with clear physical meaning is constructed by the unit impulse function, whose parameters are associated with engine system modal characteristics. Afterwards, the signals that indicate the engine operating status are accurately reconstructed by segmental matching pursuit. Finally, a series of precise simulation signals originated from the engine dynamic finite element model, and experimental signals on the automotive engine are used to verify the proposed method's effectiveness and antinoise performance. Additionally, comparisons with wavelet decomposition further show the proposed method to be more reliable in engine misfire diagnosis.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Extraction of Week Impulse Fault Signal Based on Sparse Decomposition
    Yan Baokang
    Zhou Fengxing
    Lu Shaowu
    2015 27TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC), 2015, : 1666 - 1670
  • [2] Rolling bearing fault feature extraction using Adaptive Resonancebased Sparse Signal Decomposition
    Wang, Kaibo
    Jiang, Hongkai
    Wu, Zhenghong
    Cao, Jiping
    ENGINEERING RESEARCH EXPRESS, 2021, 3 (01):
  • [3] Sparse Low-Rank Based Signal Analysis Method for Bearing Fault Feature Extraction
    Wang, Baoxiang
    Liao, Yuhe
    Duan, Rongkai
    Zhang, Xining
    APPLIED SCIENCES-BASEL, 2020, 10 (07):
  • [4] Research on a Fault Feature Extraction Method for an Electric Multiple Unit Axle-Box Bearing Based on a Resonance-Based Sparse Signal Decomposition and Variational Mode Decomposition Method Based on the Sparrow Search Algorithm
    Qiu, Jiandong
    Zhang, Qiang
    Tang, Minan
    Lin, Dingqiang
    Liu, Jiaxuan
    Xu, Shusheng
    SENSORS, 2024, 24 (14)
  • [5] Feature extraction of gear and bearing compound faults based on vibration signal sparse decomposition
    He, Guolin
    Li, Jianlin
    Ding, Kang
    Zhang, Zhigang
    APPLIED ACOUSTICS, 2022, 189
  • [6] Research on feature extraction method for underwater acoustic signal using secondary decomposition
    Li, Guohui
    Liu, Bo
    Yang, Hong
    OCEAN ENGINEERING, 2024, 306
  • [7] Sparse decomposition based on ADMM dictionary learning for fault feature extraction of rolling element bearing
    Tong, Qingbin
    Sun, Zhanlong
    Nie, Zhengwei
    Lin, Yuyi
    Cao, Junci
    JOURNAL OF VIBROENGINEERING, 2016, 18 (08) : 5204 - 5216
  • [8] Low-rank and periodic group sparse based signal denoising method for rolling bearing fault feature extraction
    Zhang, Qian
    Li, Xinxin
    Tang, Weili
    Mao, Hanling
    Huang, Zhenfeng
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2023, 34 (11)
  • [9] A bearing fault feature extraction method based on optimized singular spectrum decomposition and linear predictor
    Yan, Xiaoan
    Zhang, Wan
    Jia, Minping
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2021, 32 (11)
  • [10] Feature Extraction Method for Hydraulic Pump Fault Signal Based on Improved Empirical Wavelet Transform
    Zheng, Zhi
    Wang, Zhijun
    Zhu, Yong
    Tang, Shengnan
    Wang, Baozhong
    PROCESSES, 2019, 7 (11)