A GENERALIZATION OF THE WEAK AMENABILITY OF BANACH ALGEBRAS

被引:22
作者
Bodaghi, A. [2 ]
Gordji, M. Eshaghi [1 ]
Medghalchi, A. R. [3 ]
机构
[1] Semnan Univ, Dept Math, Semnan, Iran
[2] Islamic Azad Univ, Sci & Res Branch, Tehran, Iran
[3] Tarbiat Moallem Univ, Dept Math, Tehran, Iran
来源
BANACH JOURNAL OF MATHEMATICAL ANALYSIS | 2009年 / 3卷 / 01期
关键词
Banach algebra; homomorphism; derivation; (phi; psi)-derivation; weak amenability; second dual;
D O I
10.15352/bjma/1240336430
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let A be a Banach algebra and let phi and psi be continuous homomorphisms on A. We consider the following module actions on A, a.x = phi(a)x, x.a = x psi(a) (a, x is an element of A). We denote by A((phi,psi)) the above A-module. We call the Banach algebra A, (phi,psi)-weakly amenable if every derivation from A into (A((phi,psi)))* is inner. In this paper among many other things we investigate the relations between weak amenability and (phi,psi)-weak amenability of A. Some conditions can be imposed on A such that the (phi '',psi '')-weak amenability of A** implies the (phi,psi)-weak amenability of A.
引用
收藏
页码:131 / 142
页数:12
相关论文
共 16 条
[1]  
[Anonymous], 1972, MEM AM MATH SOC
[2]  
BADE WG, 1987, P LOND MATH SOC, V55, P359
[3]  
BOWLING S, 1988, SEMIGROUP FORUM, V56, P130
[4]  
Dales H. G., 2000, BANACH ALGEBRA AUTOM
[5]   The second transpose of a derivation [J].
Dales, HG ;
Rodríguez-Palacios, A ;
Velasco, MV .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2001, 64 :707-721
[6]   The amenability of measure algebras [J].
Dales, HG ;
Ghahramani, R ;
Helemskii, AY .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2002, 66 :213-226
[7]   AMENABILITY FOR DISCRETE CONVOLUTION SEMIGROUP ALGEBRAS [J].
DUNCAN, J ;
PATERSON, ALT .
MATHEMATICA SCANDINAVICA, 1990, 66 (01) :141-146
[8]   Amenability and weak amenability of second conjugate Banach algebras [J].
Ghahramani, F ;
Loy, RJ ;
Willis, GA .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 124 (05) :1489-1497
[9]   Generalized notions of amenability [J].
Ghahramani, F ;
Loy, RJ .
JOURNAL OF FUNCTIONAL ANALYSIS, 2004, 208 (01) :229-260
[10]   Amenability and topological centres of the second duals of Banach algebras [J].
Ghahramani, F ;
Laali, J .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2002, 65 (02) :191-197