Exceptional sequences of eigenfunctions for hyperbolic manifolds

被引:3
作者
Donnelly, Harold [1 ]
机构
[1] Purdue Univ, Dept Math, W Lafayette, IN 47907 USA
关键词
D O I
10.1090/S0002-9939-06-08613-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Examples are given of hyperbolic manifolds in every dimension at least five which support sequences of eigenfunctions for the Laplacian whose L-infinity-norms grow as a power of the eigenvalue while their L-2-norms are one.
引用
收藏
页码:1551 / 1555
页数:5
相关论文
共 8 条
[1]   ARITHMETIC SUBGROUPS OF ALGEBRAIC GROUPS [J].
BOREL, A ;
HARISHCHANDRA .
ANNALS OF MATHEMATICS, 1962, 75 (03) :485-&
[2]   Bounds for eigenfunctions of the Laplacian on compact Riemannian manifolds [J].
Donnelly, H .
JOURNAL OF FUNCTIONAL ANALYSIS, 2001, 187 (01) :247-261
[3]  
DONNELLY H, 1982, J DIFFER GEOM, V17, P239
[4]  
HIRZEBRUCH F, 1973, ENSEIGN MATH, V19, P183
[5]   THE BEHAVIOR OF EIGENSTATES OF ARITHMETIC HYPERBOLIC MANIFOLDS [J].
RUDNICK, Z ;
SARNAK, P .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1994, 161 (01) :195-213
[6]  
Sarnak P., 1995, ISRAEL MATH C P, V8, P183
[7]   CONSTRUCTION OF HOLOMORPHIC CUSP FORMS OF HALF INTEGRAL WEIGHT [J].
SHINTANI, T .
NAGOYA MATHEMATICAL JOURNAL, 1975, 58 (SEP) :83-126
[8]   Lp norms of eigenfunctions in the completely integrable case [J].
Toth, JA ;
Zelditch, S .
ANNALES HENRI POINCARE, 2003, 4 (02) :343-368