Non-commutative geometry and symplectic field theory

被引:29
作者
Amorim, R. G. G.
Fernandes, M. C. B.
Khanna, F. C.
Santana, A. E. [1 ]
Vianna, J. D. M.
机构
[1] Univ Brasilia, Inst Fis, BR-70910900 Brasilia, DF, Brazil
[2] Univ Alberta, Dept Phys, Theoret Phys Inst, Edmonton, AB T6G 2J1, Canada
[3] TRIUMF, Vancouver, BC V6T 2A3, Canada
[4] Univ Fed Bahia, Inst Fis, BR-40210340 Salvador, BA, Brazil
关键词
D O I
10.1016/j.physleta.2006.09.074
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this work we study representations of the Poincare group defined over symplectic manifolds, deriving the Klein-Gordon and the Dirac equation in phase space. The formalism is associated with relativistic Wigner functions; the Noether theorem is derived in phase space and an interacting field, including a gauge field, approach is discussed. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:464 / 471
页数:8
相关论文
共 21 条
[1]   Hamiltonian BRST quantization of a noncommutative non-Abelian gauge theory and its Seiberg-Witten map [J].
Amorim, R ;
Farias, FA .
PHYSICAL REVIEW D, 2004, 69 (04)
[2]   Poincare-Lie algebra and relativistic phase space [J].
Andrade, MCB ;
Santana, AE ;
Vianna, JDM .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (22) :4015-4024
[3]   ON A QUANTUM ALGEBRAIC APPROACH TO A GENERALIZED PHASE-SPACE [J].
BOHM, D ;
HILEY, BJ .
FOUNDATIONS OF PHYSICS, 1981, 11 (3-4) :179-203
[4]   Wigner trajectory characteristics in phase space and field theory [J].
Curtright, T ;
Zachos, C .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (05) :771-779
[5]   Features of time-independent Wigner functions [J].
Curtright, T ;
Fairlie, D ;
Zachos, C .
PHYSICAL REVIEW D, 1998, 58 (02)
[6]  
de Gosson M. A., 2000, J PHYS A, V38, P1
[7]   Galilean Duffin-Kemmer-Petiau algebra and symplectic structure [J].
Fernandes, MCB ;
Santana, AE ;
Vianna, JDM .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (13) :3841-3854
[8]  
FERNANDES MCB, 1999, BRAZ J PHYS, V28, P2
[9]   SYMMETRIES AND TIME EVOLUTION IN DISCRETE PHASE SPACES - A SOLUBLE MODEL CALCULATION [J].
GALETTI, D ;
PIZA, AFR .
PHYSICA A, 1995, 214 (02) :207-228
[10]   DISTRIBUTION-FUNCTIONS IN PHYSICS - FUNDAMENTALS [J].
HILLERY, M ;
OCONNELL, RF ;
SCULLY, MO ;
WIGNER, EP .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1984, 106 (03) :121-167