EEG Data Fusion for Improving Accuracy of Binary Classification

被引:0
|
作者
Skarga-Bandurova, Inna [1 ]
Biloborodova, Tetiana [1 ]
Skarha-Bandurov, Illia [2 ]
Zagorodna, Natalia [3 ]
Shumova, Larisa [1 ]
机构
[1] Volodymyr Dahl East Ukrainian Natl Univ, Lugansk, Luhansk Oblast, Ukraine
[2] Luhansk State Med Univ, Lugansk, Luhansk Oblast, Ukraine
[3] Ternopil Ivan Puluj Natl Tech Univ, Ternopol, Ternopil Oblast, Ukraine
来源
ICT FOR HEALTH SCIENCE RESEARCH | 2019年 / 258卷
关键词
EEG; data fusion; classification; technique;
D O I
10.3233/978-1-61499-959-1-130
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The paper refers to the problem of classification for multiple medical data. The proposed methodology for EEG data processing consists of seven stages and assumes different variations of the Dempster-Shafer technique as a base instrument for data fusion. Attained accuracy is comparable to other more popular algorithms and can be a promising further basis for real-time data classification.
引用
收藏
页码:130 / 134
页数:5
相关论文
共 50 条
  • [1] Data fusion for high accuracy classification of urban areas
    Jenerowicz, Agnieszka
    Kaczynski, Romuald
    Siok, Katarzyna
    Schismak, Anna
    REMOTE SENSING TECHNOLOGIES AND APPLICATIONS IN URBAN ENVIRONMENTS III, 2018, 10793
  • [2] CLASSIFICATION ACCURACY INCREASE USING MULTISENSOR DATA FUSION
    Makarau, Aliaksei
    Palubinskas, Gintautas
    Reinartz, Peter
    ISPRS HANNOVER WORKSHOP 2011: HIGH-RESOLUTION EARTH IMAGING FOR GEOSPATIAL INFORMATION, 2011, 39-4 (W19): : 181 - 186
  • [3] Combining data fusion with multiresolution analysis for improving the classification accuracy of uterine EMG signals
    Moslem, Bassam
    Diab, Mohamad
    Khalil, Mohamad
    Marque, Catherine
    EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING, 2012,
  • [4] Combining data fusion with multiresolution analysis for improving the classification accuracy of uterine EMG signals
    Bassam Moslem
    Mohamad Diab
    Mohamad Khalil
    Catherine Marque
    EURASIP Journal on Advances in Signal Processing, 2012
  • [5] Data fusion for paroxysmal events' classification from EEG
    Pippa, Evangelia
    Zacharaki, Evangelia I.
    Koutroumanidis, Michael
    Megalooikonomou, Vasileios
    JOURNAL OF NEUROSCIENCE METHODS, 2017, 275 : 55 - 65
  • [6] Improving Classification Accuracy of EEG Based Brain Computer Interface Signals
    Aydemir, Onder
    2015 23RD SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2015, : 176 - 179
  • [7] Improving the Accuracy of Saffron Adulteration Classification and Quantification through Data Fusion of Thin-Layer Chromatography Imaging and Raman Spectral Analysis
    Dai, Haochen
    Gao, Qixiang
    Lu, Jiakai
    He, Lili
    FOODS, 2023, 12 (12)
  • [8] A NOVEL DECISION FUSION APPROACH TO IMPROVING CLASSIFICATION ACCURACY OF HYPERSPECTRAL IMAGES
    Gormus, Esra Tunc
    Canagarajah, Nishan
    Achim, Alin
    2012 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2012, : 4158 - 4161
  • [9] Research on improving TDOA location accuracy based on data fusion
    Zhang, C
    Liu, JM
    Liu, S
    Li, WH
    PROCEEDINGS OF THE IEEE 6TH CIRCUITS AND SYSTEMS SYMPOSIUM ON EMERGING TECHNOLOGIES: FRONTIERS OF MOBILE AND WIRELESS COMMUNICATION, VOLS 1 AND 2, 2004, : 761 - 764
  • [10] Data Fusion of Laser-Induced Breakdown Spectroscopy (LIBS) and RAMAN Spectroscopy: Improving the Accuracy of Ginseng Classification
    Lin, Xiaomei
    Zhen, Xin
    Lin, Jingjun
    Huang, Yutao
    Yang, Jiangfei
    Dai, Panyang
    Ren, Yongkang
    Ding, Ke
    ANALYTICAL LETTERS, 2025, 58 (07) : 1139 - 1150