Comparative Analysis of Protocols to Induce Human CD4+Foxp3+Regulatory T Cells by Combinations of IL-2, TGF-beta, Retinoic Acid, Rapamycin and Butyrate

被引:84
作者
Schmidt, Angelika [1 ,2 ]
Eriksson, Matilda [1 ,2 ]
Shang, Ming-Mei [1 ,2 ]
Weyd, Heiko [3 ]
Tegner, Jesper [1 ,2 ]
机构
[1] Karolinska Inst, Dept Med, Ctr Mol Med, Unit Computat Med, Stockholm, Sweden
[2] Karolinska Univ Hosp, Stockholm, Sweden
[3] German Canc Res Ctr, Tumor Immunol Program, Div Immunogenet, Heidelberg, Germany
来源
PLOS ONE | 2016年 / 11卷 / 02期
基金
瑞典研究理事会;
关键词
VERSUS-HOST-DISEASE; DE-NOVO GENERATION; GROWTH-FACTOR-BETA; FOXP3; EXPRESSION; RECEPTOR STIMULATION; SUPPRESSIVE FUNCTION; PROMOTES GENERATION; EPIGENETIC CHANGES; IN-VIVO; DIFFERENTIATION;
D O I
10.1371/journal.pone.0148474
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Regulatory T cells (Tregs) suppress other immune cells and are critical mediators of peripheral tolerance. Therapeutic manipulation of Tregs is subject to numerous clinical investigations including trials for adoptive Treg transfer. Since the number of naturally occurring Tregs (nTregs) is minute, it is highly desirable to develop a complementary approach of inducing Tregs (iTregs) from naive T cells. Mouse studies exemplify the importance of peripherally induced Tregs as well as the applicability of iTreg transfer in different disease models. Yet, procedures to generate iTregs are currently controversial, particularly for human cells. Here we therefore comprehensively compare different established and define novel protocols of human iTreg generation using TGF-beta in combination with other compounds. We found that human iTregs expressed several Treg signature molecules, such as Foxp3, CTLA-4 and EOS, while exhibiting low expression of the cytokines Interferon-gamma, IL-10 and IL-17. Importantly, we identified a novel combination of TGF-beta, retinoic acid and rapamycin as a robust protocol to induce human iTregs with superior suppressive activity in vitro compared to currently established induction protocols. However, iTregs generated by these protocols did not stably retain Foxp3 expression and did not suppress in vivo in a humanized graft-versus-host-disease mouse model, highlighting the need for further research to attain stable, suppressive iTregs. These results advance our understanding of the conditions enabling human iTreg generation and may have important implications for the development of adoptive transfer strategies targeting autoimmune and inflammatory diseases.
引用
收藏
页数:31
相关论文
共 116 条
  • [1] Regulatory T cells: recommendations to simplify the nomenclature
    Abbas, Abul K.
    Benoist, Christophe
    Bluestone, Jeffrey A.
    Campbell, Daniel J.
    Ghosh, Sankar
    Hori, Shohei
    Jiang, Shuiping
    Kuchroo, Vijay K.
    Mathis, Diane
    Roncarolo, Maria Grazia
    Rudensky, Alexander
    Sakaguchi, Shimon
    Shevach, Ethan M.
    Vignali, Dario A. A.
    Ziegler, Steve F.
    [J]. NATURE IMMUNOLOGY, 2013, 14 (04) : 307 - 308
  • [2] IL-2 administration increases CD4+CD25hi Foxp3+ regulatory T cells in cancer patients
    Ahmadzadeh, M
    Rosenberg, ST
    [J]. BLOOD, 2006, 107 (06) : 2409 - 2414
  • [3] Activation-induced FOXP3 in human T effector cells does not suppress proliferation or cytokine production
    Allan, Sarah E.
    Crome, Sarah Q.
    Crellin, Natasha K.
    Passerini, Laura
    Steiner, Theodore S.
    Bacchetta, Rosa
    Roncarolo, Maria G.
    Levings, Megan K.
    [J]. INTERNATIONAL IMMUNOLOGY, 2007, 19 (04) : 345 - 354
  • [4] Inducible reprogramming of human T cells into Treg cells by a conditionally active form of FOXP3
    Allan, Sarah E.
    Song-Zhao, George X.
    Abraham, Thomas
    McMurchy, Alicia N.
    Levings, Megan K.
    [J]. EUROPEAN JOURNAL OF IMMUNOLOGY, 2008, 38 (12) : 3282 - 3289
  • [5] [Anonymous], BLOOD
  • [6] Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation
    Arpaia, Nicholas
    Campbell, Clarissa
    Fan, Xiying
    Dikiy, Stanislav
    van der Veeken, Joris
    deRoos, Paul
    Liu, Hui
    Cross, Justin R.
    Pfeffer, Klaus
    Coffer, Paul J.
    Rudensky, Alexander Y.
    [J]. NATURE, 2013, 504 (7480) : 451 - +
  • [7] DNA demethylation in the human FOXP3 locus discriminates regulatory T cells from activated FOXP3+ conventional T cells
    Baron, Udo
    Floess, Stefan
    Wieczorek, Georg
    Baumann, Katrin
    Gruetzkau, Andreas
    Dong, Jun
    Thiel, Andreas
    Boeld, Tina J.
    Hoffmann, Petra
    Edinger, Matthias
    Tuerbachova, Ivana
    Hamann, Alf
    Olek, Sven
    Huehn, Jochen
    [J]. EUROPEAN JOURNAL OF IMMUNOLOGY, 2007, 37 (09) : 2378 - 2389
  • [8] Rapamycin selectively expands CD4+CD25+FoxP3+ regulatory T cells
    Battaglia, M
    Stabilini, A
    Roncarolo, MG
    [J]. BLOOD, 2005, 105 (12) : 4743 - 4748
  • [9] Rapamycin promotes expansion of functional CD4+CD25+FOXP3+ regulatory T cells of both healthy subjects and type 1 diabetic patients
    Battaglia, Manuela
    Stabilini, Angela
    Migliavacca, Barbara
    Horejs-Hoeck, Jutta
    Kaupper, Thomas
    Roncarolo, Maria-Grazia
    [J]. JOURNAL OF IMMUNOLOGY, 2006, 177 (12) : 8338 - 8347
  • [10] All-trans retinoic acid mediates enhanced T reg cell growth, differentiation, and gut homing in the face of high levels of co-stimulation
    Benson, Micah J.
    Pino-Lagos, Karina
    Rosemblatt, Mario
    Noelle, Randolph J.
    [J]. JOURNAL OF EXPERIMENTAL MEDICINE, 2007, 204 (08) : 1765 - 1774