Algebraic aspects of hypergeometric differential equations

被引:5
作者
Reichelt, Thomas [1 ]
Schulze, Mathias [2 ]
Sevenheck, Christian [3 ]
Walther, Uli [4 ]
机构
[1] Heidelberg Univ, Math Inst, Neuenheimer Feld 205, D-69120 Heidelberg, Germany
[2] Tech Univ Kaiserslautern, Fachbereich Math, Postfach 3049, D-67653 Kaiserslautern, Germany
[3] Tech Univ Chemnitz, Fak Math, D-09107 Chemnitz, Germany
[4] Purdue Univ, Dept Math, 150 N Univ St, W Fafayette, IN 47907 USA
来源
BEITRAGE ZUR ALGEBRA UND GEOMETRIE-CONTRIBUTIONS TO ALGEBRA AND GEOMETRY | 2021年 / 62卷 / 01期
关键词
QUANTUM COHOMOLOGY; GEVREY SOLUTIONS; MIRROR SYMMETRY; RANK JUMPS; D-MODULES; SYSTEMS; MONODROMY; INTEGRALS; REDUCIBILITY; MANIFOLDS;
D O I
10.1007/s13366-020-00560-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We review some classical and modern aspects of hypergeometric differential equations, including A-hypergeometric systems of Gelland, Graev, Kapranov and Zelevinsky. Some recent advances in this theory, such as Euler-Koszul homology, rank jump phenomena, irregularity questions and Hodge theoretic aspects are discussed with more details. We also give some applications of the theory of hypergeometric systems to toric mirror symmetry.
引用
收藏
页码:137 / 203
页数:67
相关论文
共 123 条