Nonexistence of limit cycles in two classes of predator-prey systems

被引:5
作者
Aghajani, A.
Moradifam, A.
机构
[1] Sharif Univ Technol, Dept Math, Tehran, Iran
[2] Damghan Univ Basic Sci, Dept Math, Damghan, Iran
关键词
functional response; predator-prey system; limit cycle;
D O I
10.1016/j.amc.2005.07.057
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with the question of nonexistence of limit cycles in two famous classes of predator-prey systems. We present some sufficient conditions for the nonexistence of limit cycles in these systems. Our results extend and improve the results presented by Moghadas. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:356 / 365
页数:10
相关论文
共 10 条
[1]   UNIQUENESS OF A LIMIT-CYCLE FOR A PREDATOR-PREY SYSTEM [J].
CHENG, KS .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1981, 12 (04) :541-548
[2]  
CHENG KS, 1981, J MATH BIOL, V12, P115, DOI 10.1007/BF00275207
[3]  
FREEDMAN HI, 1985, MATH BIOSCI, V76, P525
[4]  
GOH BS, 1978, B MATH BIOL, V40, P1
[5]   GLOBAL STABILITY OF A PREDATOR-PREY SYSTEM [J].
HSU, SB .
MATHEMATICAL BIOSCIENCES, 1978, 39 (1-2) :1-10
[6]   GLOBAL STABILITY FOR A CLASS OF PREDATOR-PREY SYSTEMS [J].
HSU, SB ;
HUANG, TW .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1995, 55 (03) :763-783
[7]  
KOOIJ RE, 1996, J MATH ANAL APPL, V188, P472
[8]  
KUANG Y, 1988, Mathematical Biosciences, V88, P67, DOI 10.1016/0025-5564(88)90049-1
[9]  
MOGHADAS SM, 2002, APPL ANAL, V81, P51
[10]   NONEXISTENCE OF PERIODIC-SOLUTIONS OF THE LIENARD SYSTEM [J].
SUGIE, J ;
HARA, T .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1991, 159 (01) :224-236