A comparison of two machine-learning techniques to focus the diagnosis task

被引:0
作者
Prieto, Oscar [1 ]
Bregon, Anibal [1 ]
机构
[1] Univ Valladolid, Dept Comp Sci, Intelligent Syst Grp GSI, ETSI Informat, Campus Miguel Delibes S-N, E-47011 Valladolid, Spain
来源
STAIRS 2006 | 2006年 / 142卷
关键词
Machine-learning; Boosting; Dynamic Time Warping;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This work considers a time series classification task: fault identification in dynamic systems. Two methods are compared: i) Boosting and ii) K-Nearest Neighbors with Dynamic Time Warping distance.
引用
收藏
页码:265 / +
页数:2
相关论文
共 50 条
  • [41] Forecasting the Bearing Capacity of the Driven Piles Using Advanced Machine-Learning Techniques
    Benbouras, Mohammed Amin
    Petrisor, Alexandru-Ionut
    Zedira, Hamma
    Ghelani, Laala
    Lefilef, Lina
    APPLIED SCIENCES-BASEL, 2021, 11 (22):
  • [42] Certified Machine-Learning Models
    Damiani, Ernesto
    Ardagna, Claudio A.
    SOFSEM 2020: THEORY AND PRACTICE OF COMPUTER SCIENCE, 2020, 12011 : 3 - 15
  • [43] Mobile-Sandbox: combining static and dynamic analysis with machine-learning techniques
    Spreitzenbarth, Michael
    Schreck, Thomas
    Echtler, Florian
    Arp, Daniel
    Hoffmann, Johannes
    INTERNATIONAL JOURNAL OF INFORMATION SECURITY, 2015, 14 (02) : 141 - 153
  • [44] Leveraging ontologies and machine-learning techniques for malware analysis into Android permissions ecosystems
    Navarro, Luiz C.
    Navarro, Alexandre K. W.
    Gregio, Andre
    Rocha, Anderson
    Dahab, Ricardo
    COMPUTERS & SECURITY, 2018, 78 : 429 - 453
  • [45] Machine-Learning Techniques for Predicting Phishing Attacks in Blockchain Networks: A Comparative Study
    Joshi, Kunj
    Bhatt, Chintan
    Shah, Kaushal
    Parmar, Dwireph
    Corchado, Juan M.
    Bruno, Alessandro
    Mazzeo, Pier Luigi
    ALGORITHMS, 2023, 16 (08)
  • [46] The Use of Machine-Learning Techniques in Material Constitutive Modelling for Metal Forming Processes
    Lourenco, Ruben
    Andrade-Campos, Antonio
    Georgieva, Petia
    METALS, 2022, 12 (03)
  • [47] Mobile-Sandbox: combining static and dynamic analysis with machine-learning techniques
    Michael Spreitzenbarth
    Thomas Schreck
    Florian Echtler
    Daniel Arp
    Johannes Hoffmann
    International Journal of Information Security, 2015, 14 : 141 - 153
  • [48] Endpoint Temperature Prediction model for LD Converters Using Machine-Learning Techniques
    Jo, Hyeontae
    Hwang, Hyung Ju
    Du Phan
    Lee, Youmin
    Jang, Hyeokjae
    2019 IEEE 6TH INTERNATIONAL CONFERENCE ON INDUSTRIAL ENGINEERING AND APPLICATIONS (ICIEA), 2019, : 22 - 26
  • [49] ANALYSIS OF PIEZOELECTRIC SEMICONDUCTORS VIA DATA-DRIVEN MACHINE-LEARNING TECHNIQUES
    Guo, Yu-ting
    Li, De-zhi
    Zhang, Chun-li
    PROCEEDINGS OF THE 2020 15TH SYMPOSIUM ON PIEZOELECTRCITY, ACOUSTIC WAVES AND DEVICE APPLICATIONS (SPAWDA), 2021, : 258 - 262
  • [50] An Empirical Comparison of Machine-Learning Methods on Bank Client Credit Assessments
    Munkhdalai, Lkhagvadorj
    Munkhdalai, Tsendsuren
    Namsrai, Oyun-Erdene
    Lee, Jong Yun
    Ryu, Keun Ho
    SUSTAINABILITY, 2019, 11 (03)