Original Research Combining CNN-based histologic whole slide image analysis and patient data to improve skin cancer classification

被引:55
作者
Hoehn, Julia [1 ]
Krieghoff-Henning, Eva [1 ]
Jutzi, Tanja B. [1 ]
von Kalle, Christof [2 ,3 ]
Utikal, Jochen S. [4 ,5 ]
Meier, Friedegund [6 ,7 ]
Gellrich, Frank F. [6 ,7 ]
Hobelsberger, Sarah [6 ,7 ]
Hauschild, Axel [8 ]
Schlager, Justin G. [9 ]
French, Lars [9 ]
Heinzerling, Lucie [9 ]
Schlaak, Max [10 ]
Ghoreschi, Kamran [10 ]
Hilke, Franz J. [10 ]
Poch, Gabriela [10 ]
Kutzner, Heinz [11 ]
Heppt, Markus, V [12 ]
Haferkamp, Sebastian [13 ]
Sondermann, Wiebke [14 ]
Schadendorf, Dirk [14 ]
Schilling, Bastian [15 ]
Goebeler, Matthias [15 ]
Hekler, Achim [1 ]
Froehling, Stefan [16 ,17 ]
Lipka, Daniel B. [16 ,17 ]
Kather, Jakob N. [18 ]
Krahl, Dieter [19 ]
Ferrara, Gerardo [20 ]
Haggenmueller, Sarah [1 ]
Brinker, Titus J. [1 ]
机构
[1] German Canc Res Ctr, Natl Ctr Tumor Dis, Digital Biomarkers Oncol Grp, Heidelberg, Germany
[2] Charite, Dept Clin Translat Sci, Berlin, Germany
[3] Berlin Inst Hlth BIH, Berlin, Germany
[4] Heidelberg Univ, Dept Dermatol, Heidelberg, Germany
[5] German Canc Res Ctr, Skin Canc Unit, Heidelberg, Germany
[6] Tech Univ, Univ Hosp Carl Gustav Carus, Univ Canc Ctr, Skin Canc Ctr, Dresden, Germany
[7] Tech Univ, Univ Hosp Carl Gustav Carus, Natl Ctr Tumor Dis Dresden, Dept Dermatol, Dresden, Germany
[8] Univ Hosp Kiel, Dept Dermatol, Kiel, Germany
[9] Ludwig Maximilian Univ Munich, Dept Dermatol & Allergol, Munich, Germany
[10] Charite Univ Med Berlin, Dept Dermatol Venereol & Allergol, Berlin, Germany
[11] Dermatopathol Lab, Friedrichshafen, Germany
[12] Univ Hosp Erlangen, Dept Dermatol, Erlangen, Germany
[13] Univ Hosp Regensburg, Dept Dermatol, Regensburg, Germany
[14] Univ Hosp Essen, Dept Dermatol, Essen, Germany
[15] Univ Hosp Wurzburg, Dept Dermatol, Wurzburg, Germany
[16] German Canc Res Ctr, Div Translat Med Oncol, Sect Translat Canc Epigen, D-69120 Heidelberg, Germany
[17] Natl Ctr Tumor Dis NCT, D-69120 Heidelberg, Germany
[18] Univ Hosp RWTH Aachen, Dept Med 3, Aachen, Germany
[19] Private Lab Dermatohistopathol, Monchhofstr 52, D-69120 Heidelberg, Germany
[20] Macerata Gen Hosp, Anat Pathol Unit, Macerata, Italy
关键词
Histologic whole slide images; Convolutional neural networks; Data fusion; Patient data; Skin cancer classification; HISTOPATHOLOGIC DIAGNOSIS; LEVEL CLASSIFICATION; CUTANEOUS MELANOMA; DISCORDANCE; DERMATOLOGISTS; RECOGNITION; SYSTEM;
D O I
10.1016/j.ejca.2021.02.032
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background: Clinicians and pathologists traditionally use patient data in addition to clinical examination to support their diagnoses. Objectives: We investigated whether a combination of histologic whole slides image (WSI) analysis based on convolutional neural networks (CNNs) and commonly available patient data (age, sex and anatomical site of the lesion) in a binary melanoma/nevus classification task could increase the performance compared with CNNs alone. Methods: We used 431 WSIs from two different laboratories and analysed the performance of classifiers that used the image or patient data individually or three common fusion techniques. Furthermore, we tested a naive combination of patient data and an image classifier: for cases interpreted as 'uncertain' (CNN output score <0.7), the decision of the CNN was replaced by the decision of the patient data classifier. Results: The CNN on its own achieved the best performance (mean +/- standard deviation of five individual runs) with AUROC of 92.30% +/- 0.23% and balanced accuracy of 83.17% +/- 0.38%. While the classification performance was not significantly improved in general by any of the tested fusions, naive strategy of replacing the image classifier with the patient data classifier on slides with low output scores improved balanced accuracy to 86.72% +/- 0.36%. Conclusion: In most cases, the CNN on its own was so accurate that patient data integration did not provide any benefit. However, incorporating patient data for lesions that were classified by the CNN with low 'confidence' improved balanced accuracy. (c) 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页码:94 / 101
页数:8
相关论文
共 36 条
  • [1] QuPath: Open source software for digital pathology image analysis
    Bankhead, Peter
    Loughrey, Maurice B.
    Fernandez, Jose A.
    Dombrowski, Yvonne
    Mcart, Darragh G.
    Dunne, Philip D.
    McQuaid, Stephen
    Gray, Ronan T.
    Murray, Liam J.
    Coleman, Helen G.
    James, Jacqueline A.
    Salto-Tellez, Manuel
    Hamilton, Peter W.
    [J]. SCIENTIFIC REPORTS, 2017, 7
  • [2] LIGHT EXPOSURE OF THE LOWER LEG AS A PATHOGENETIC FACTOR IN THE OCCURRENCE OF MALIGNANT-MELANOMA
    BELL, M
    BEYL, CM
    SCHOPF, RE
    SCHRAMM, P
    [J]. DERMATOLOGY, 1992, 185 (04) : 257 - 261
  • [3] Random forests
    Breiman, L
    [J]. MACHINE LEARNING, 2001, 45 (01) : 5 - 32
  • [4] Deep learning outperformed 136 of 157 dermatologists in a head-to-head dermoscopic melanoma image classification task
    Brinker, Titus J.
    Hekler, Achim
    Enk, Alexander H.
    Klode, Joachim
    Hauschild, Axel
    Berking, Carola
    Schilling, Bastian
    Haferkamp, Sebastian
    Schadendorf, Dirk
    Holland-Letz, Tim
    Utikal, Jochen S.
    von Kalle, Christof
    [J]. EUROPEAN JOURNAL OF CANCER, 2019, 113 : 47 - 54
  • [5] A convolutional neural network trained with dermoscopic images performed on par with 145 dermatologists in a clinical melanoma image classification task
    Brinker, Titus J.
    Hekler, Achim
    Enk, Alexander H.
    Klode, Joachim
    Hauschild, Axel
    Berking, Carola
    Schilling, Bastian
    Haferkamp, Sebastian
    Schadendorf, Dirk
    Froehling, Stefan
    Utikal, Jochen S.
    von Kalle, Christof
    Ludwig-Peitsch, Wiebke
    Sirokay, Judith
    Heinzerling, Lucie
    Albrecht, Magarete
    Baratella, Katharina
    Bischof, Lena
    Chorti, Eleftheria
    Dith, Anna
    Drusio, Christina
    Giese, Nina
    Gratsias, Emmanouil
    Griewank, Klaus
    Hallasch, Sandra
    Hanhart, Zdenka
    Herz, Saskia
    Hohaus, Katja
    Jansen, Philipp
    Jockenhoefer, Finja
    Kanaki, Theodora
    Knispel, Sarah
    Leonhard, Katja
    Martaki, Anna
    Matei, Liliana
    Matull, Johanna
    Olischewski, Alexandra
    Petri, Maximilian
    Placke, Jan-Malte
    Raub, Simon
    Salva, Katrin
    Schlott, Swantje
    Sody, Elsa
    Steingrube, Nadine
    Stoffels, Ingo
    Ugurel, Selma
    Sondermann, Wiebke
    Zaremba, Anne
    Gebhardt, Christoffer
    Booken, Nina
    [J]. EUROPEAN JOURNAL OF CANCER, 2019, 111 : 148 - 154
  • [6] Comparing artificial intelligence algorithms to 157 German dermatologists: the melanoma classification benchmark
    Brinker, Titus J.
    Hekler, Achim
    Hauschild, Axel
    Berking, Carola
    Schilling, Bastian
    Enk, Alexander H.
    Haferkamp, Sebastian
    Karoglan, Ante
    von Kalle, Christof
    Weichenthal, Michael
    Sattler, Elke
    Schadendorf, Dirk
    Gaiser, Maria R.
    Klode, Joachim
    Utikal, Jochen S.
    [J]. EUROPEAN JOURNAL OF CANCER, 2019, 111 : 30 - 37
  • [7] Clinical-grade computational pathology using weakly supervised deep learning on whole slide images
    Campanella, Gabriele
    Hanna, Matthew G.
    Geneslaw, Luke
    Miraflor, Allen
    Silva, Vitor Werneck Krauss
    Busam, Klaus J.
    Brogi, Edi
    Reuter, Victor E.
    Klimstra, David S.
    Fuchs, Thomas J.
    [J]. NATURE MEDICINE, 2019, 25 (08) : 1301 - +
  • [8] Interobserver variability on the histopathologic diagnosis of cutaneous melanoma and other pigmented skin lesions
    Corona, R
    Mele, A
    Amini, M
    DeRosa, G
    Coppola, G
    Piccardi, P
    Fucci, M
    Pasquini, P
    Faraggiana, T
    [J]. JOURNAL OF CLINICAL ONCOLOGY, 1996, 14 (04) : 1218 - 1223
  • [9] Recognition of Cutaneous Melanoma on Digitized Histopathological SlidesviaArtificial Intelligence Algorithm
    De Logu, Francesco
    Ugolini, Filippo
    Maio, Vincenza
    Simi, Sara
    Cossu, Antonio
    Massi, Daniela
    Nassini, Romina
    Laurino, Marco
    [J]. FRONTIERS IN ONCOLOGY, 2020, 10
  • [10] Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848