A new approach to the analytic soliton solutions for the variable-coefficient higher-order nonlinear Schrodinger model in inhomogeneous optical fibers

被引:13
|
作者
Liu, Wen-Jun [1 ]
Tian, Bo [1 ,2 ,3 ]
Wang, Pan [1 ]
Jiang, Yan [1 ]
Sun, Kun [1 ]
Li, Min [1 ]
Qu, Qi-Xing [1 ]
机构
[1] Beijing Univ Posts & Telecommun, Sch Sci, Beijing 100876, Peoples R China
[2] Beijing Univ Aeronaut & Astronaut, State Key Lab Software Dev Environm, Beijing 100191, Peoples R China
[3] Beijing Univ Posts & Telecommun, Minist Educ, Key Lab Informat Photon & Opt Commun BUPT, Beijing 100876, Peoples R China
基金
中国国家自然科学基金;
关键词
variable-coefficient higher-order nonlinear Schrodinger equation; bilinear form; soliton solution; dispersion profile; symbolic computation; DISPERSIVE DIELECTRIC FIBERS; DARK SOLITONS; SYMBOLIC-COMPUTATION; BACKLUND TRANSFORMATION; MULTISOLITON SOLUTIONS; 3RD-ORDER DISPERSION; ULTRASHORT SOLITON; PULSE-PROPAGATION; DECREASING FIBER; EQUATION;
D O I
10.1080/09500341003624735
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In this paper, for the propagation of the ultra-short optical pulses in the normal dispersion regime of inhomogeneous optical fibers, the variable-coefficient higher-order nonlinear Schrodinger equation is investigated. A bilinear form and analytic soliton solutions are obtained with the help of the modified Hirota method and symbolic computation. Through choosing the different dispersion profiles of the inhomogeneous optical fibers, relevant properties of the soliton solution are graphically discussed. Parabolic-type evolution of the soliton is observed. Additionally, periodic and s-shaped solitons are derived, respectively. Finally, a possibly applicable compression technique for the dark soliton is proposed. The results might be of potential application to soliton control, soliton compression, signal amplification and dispersion management.
引用
收藏
页码:309 / 315
页数:7
相关论文
共 50 条
  • [31] Nonautonomous soliton solutions of variable-coefficient fractional nonlinear Schrodinger equation
    Wu, Gang-Zhou
    Dai, Chao-Qing
    APPLIED MATHEMATICS LETTERS, 2020, 106
  • [32] Integrability aspects with optical solitons of a generalized variable-coefficient N-coupled higher order nonlinear Schrodinger system from inhomogeneous optical fibers
    Lue, Xing
    Li, Juan
    Zhang, Hai-Qiang
    Xu, Tao
    Li, Li-Li
    Tian, Bo
    JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (04)
  • [33] Periodic soliton interactions for higher-order nonlinear Schrodinger equation in optical fibers
    Chen, Jigen
    Luan, Zitong
    Zhou, Qin
    Alzahrani, Abdullah Kamis
    Biswas, Anjan
    Liu, Wenjun
    NONLINEAR DYNAMICS, 2020, 100 (03) : 2817 - 2821
  • [34] Optical soliton solutions of the generalized higher-order nonlinear Schrodinger equations and their applications
    Arshad, M.
    Seadawy, Aly R.
    Lu, Dianchen
    OPTICAL AND QUANTUM ELECTRONICS, 2018, 50 (11)
  • [35] Nonautonomous solitons in the continuous wave background of the variable-coefficient higher-order nonlinear Schrodinger equation
    Dai Chao-Qing
    Chen Wei-Lu
    CHINESE PHYSICS B, 2013, 22 (01)
  • [36] Symbolic computation on soliton solutions for variable-coefficient nonlinear Schrodinger equation in nonlinear optics
    Liu, Wen-Jun
    Tian, Bo
    OPTICAL AND QUANTUM ELECTRONICS, 2012, 43 (11-15) : 147 - 162
  • [37] Bilinear forms and dark-soliton solutions for a fifth-order variable-coefficient nonlinear Schrodinger equation in an optical fiber
    Zhao, Chen
    Gao, Yi-Tian
    Lan, Zhong-Zhou
    Yang, Jin-Wei
    Su, Chuan-Qi
    MODERN PHYSICS LETTERS B, 2016, 30 (24):
  • [38] Exact soliton solutions for the higher-order nonlinear Schrodinger equation
    Li, B
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2005, 16 (08): : 1225 - 1237
  • [39] Nondegenerate solitons and collision dynamics of the variable-coefficient coupled higher-order nonlinear Schrodinger model via the Hirota method
    Mou, Da-Sheng
    Dai, Chao-Qing
    APPLIED MATHEMATICS LETTERS, 2022, 133
  • [40] Optical soliton solutions to a higher-order nonlinear Schrodinger equation with Kerr law nonlinearity
    Gunay, B.
    RESULTS IN PHYSICS, 2021, 27