Quantum Gravity: A Fluctuating Point of View

被引:45
作者
Pawlowski, Jan M. [1 ,2 ]
Reichert, Manuel [3 ,4 ]
机构
[1] Heidelberg Univ, Inst Theoret Phys, Heidelberg, Germany
[2] XtreMe Matter Inst EMMI, GSI Helmholtzzentrum Schwerionenforsch MbH, Darmstadt, Germany
[3] Univ Southern Denmark, CP3 Origins, Odense, Denmark
[4] Univ Sussex, Dept Phys & Astron, Brighton, E Sussex, England
基金
新加坡国家研究基金会;
关键词
quantum gravity; asymptotic safety; background independence; diffeomorphism invariance; ward identities; YANG-MILLS THEORY; EXACT RENORMALIZATION-GROUP; MANIFESTLY GAUGE-INVARIANT; FLOW EQUATIONS; BRS SYMMETRY; ASYMPTOTIC SAFETY; SCALING SOLUTIONS; EINSTEIN GRAVITY; WILSONIAN FLOWS; ULTRAVIOLET PROPERTIES;
D O I
10.3389/fphy.2020.551848
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this contribution, we discuss the asymptotic safety scenario for quantum gravity with a functional renormalization group approach that disentangles dynamical metric fluctuations from the background metric. We review the state of the art in pure gravity and general gravity-matter systems. This includes the discussion of results on the existence and properties of the asymptotically safe ultraviolet fixed point, full ultraviolet-infrared trajectories with classical gravity in the infrared, and the curvature dependence of couplings also in gravity-matter systems. The results in gravity-matter systems concern the ultraviolet stability of the fixed point and the dominance of gravity fluctuations in minimally coupled gravity-matter systems. Furthermore, we discuss important physics properties such as locality of the theory, diffeomorphism invariance, background independence, unitarity, and access to observables, as well as open challenges.
引用
收藏
页数:34
相关论文
共 256 条
  • [11] Ambjorn J, 1997, GEOMETRY DYNAMICAL T, V50
  • [12] [Anonymous], 2016, ARXIV161206223HEPTH
  • [13] GAUGE-INVARIANCE AND UNITARITY IN HIGHER-DERIVATIVE QUANTUM-GRAVITY
    ANTONIADIS, I
    TOMBOULIS, ET
    [J]. PHYSICAL REVIEW D, 1986, 33 (10): : 2756 - 2779
  • [14] Introduction to the non-perturbative renormalization group and its recent applications
    Aoki, KI
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2000, 14 (12-13): : 1249 - 1326
  • [15] Path integral of unimodular gravity
    Ardon, R. de Leon
    Ohta, N.
    Percacci, R.
    [J]. PHYSICAL REVIEW D, 2018, 97 (02)
  • [16] A generalised manifestly gauge invariant exact renormalisation group for SU(N) Yang-Mills
    Arnone, S.
    Morris, T. R.
    Rosten, O. J.
    [J]. EUROPEAN PHYSICAL JOURNAL C, 2007, 50 (02): : 467 - 504
  • [17] Arnone S, 2005, J HIGH ENERGY PHYS
  • [18] A proposal for a manifestly gauge invariant and universal calculus in Yang-Mills theory
    Arnone, S
    Gatti, A
    Morris, TR
    [J]. PHYSICAL REVIEW D, 2003, 67 (08)
  • [19] Gauge-invariant regularisation via SU(N|N)
    Arnone, S
    Kubyshin, YA
    Morris, TR
    Tighe, JF
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2002, 17 (17): : 2283 - 2329
  • [20] Ashtekar A., 2014, From General Relativity to Quantum Gravity