Unconventional characteristic line for the nonautonomous KP equation

被引:21
作者
Yu, Xin [1 ,2 ]
Sun, Zhi-Yuan [1 ,2 ,3 ]
机构
[1] Beijing Univ Aeronaut & Astronaut, Minist Of Educ, Key Lab Fluid Mech, Beijing 100191, Peoples R China
[2] Beijing Univ Aeronaut & Astronaut, Natl Lab Computat Fluid Dynam, Beijing 100191, Peoples R China
[3] Beijing Univ Aeronaut & Astronaut, Int Res Inst Multidisciplinary Sci, Beijing 100191, Peoples R China
基金
中国国家自然科学基金;
关键词
Unconventional characteristic line; Nonautonomous KP equation; Bilinear method; PETVIASHVILI; SOLITONS;
D O I
10.1016/j.aml.2019.106047
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The unconventional characteristic line for a nonautonomous KP equation is constructed, which reveals that the propagation of solitons can be different from the traditional ones. Based on the Painleve analysis and bilinear method, we obtain the soliton solution, and further study the polarity of characteristic line, the effect of initial phase, as well as the inelastic interaction and soliton resonance. We expect these results to be helpful in understanding relevant phenomena in water waves and dust acoustic waves. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页数:6
相关论文
共 18 条
[1]  
Anders I, 2000, J NONLINEAR MATH PHY, V7, P284, DOI 10.2991/jnmp.2000.7.3.3
[2]  
[Anonymous], 1991, Nonlinear evolution equations and inverse scattering
[3]   SUBALGEBRAS OF LOOP ALGEBRAS AND SYMMETRIES OF THE KADOMTSEV-PETVIASHVILI EQUATION [J].
DAVID, D ;
KAMRAN, N ;
LEVI, D ;
WINTERNITZ, P .
PHYSICAL REVIEW LETTERS, 1985, 55 (20) :2111-2113
[4]   On the non-planar dust-ion-acoustic waves in cosmic dusty plasmas with transverse perturbations [J].
Gao, Yi-Tian ;
Tian, Bo .
EPL, 2007, 77 (01)
[5]   Cylindrical Kadomtsev-Petviashvili model, nebulons and symbolic computation for cosmic dust ion-acoustic waves [J].
Gao, YT ;
Tian, B .
PHYSICS LETTERS A, 2006, 349 (05) :314-319
[7]  
Hirota R., 2004, The direct method in soliton theory, V155
[8]   WATER-WAVES AND KORTEWEGDEVRIES EQUATIONS [J].
JOHNSON, RS .
JOURNAL OF FLUID MECHANICS, 1980, 97 (APR) :701-719
[9]   On a generalized Kadomtsev-Petviashvili equation with variable coefficients via symbolic computation [J].
Li, Li-Li ;
Tian, Bo ;
Zhang, Chun-Yi ;
Xu, Tao .
PHYSICA SCRIPTA, 2007, 76 (05) :411-417
[10]   Transformations and multi-solitonic solutions for a generalized variable-coefficient Kadomtsev-Petviashvili equation [J].
Liang, Yueqian ;
Wei, Guangmei ;
Li, Xiaonan .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 61 (11) :3268-3277