Constructing Ni/NiS Heteronanoparticle-Embedded Metal-Organic Framework-Derived Nanosheets for Enhanced Water-Splitting Catalysis

被引:90
作者
Srinivas, Katam [1 ,2 ]
Chen, Yuanfu [1 ,2 ,3 ,4 ]
Wang, Xinqiang [1 ,2 ]
Wang, Bin [1 ,2 ]
Karpuraranjith, Marimuthu [1 ,2 ]
Wang, Wei [1 ,2 ]
Su, Zhe [1 ,2 ]
Zhang, Wanli [1 ,2 ]
Yang, Dongxu [1 ,2 ]
机构
[1] Univ Elect Sci & Technol China, Sch Elect Sci & Engn, Chengdu 610054, Peoples R China
[2] Univ Elect Sci & Technol China, State Key Lab Elect Thin Films & Integrated Devic, Chengdu 610054, Peoples R China
[3] Tibet Univ, Sch Sci, Lhasa 850000, Peoples R China
[4] Tibet Univ, Inst Oxygen Supply, Lhasa 850000, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Metal-organic frameworks; Semi-MOF derivatives; Nickel sulfide nanoparticles; Bifunctional electrocatalysts; Water electrolysis; EFFICIENT BIFUNCTIONAL ELECTROCATALYSTS; OXYGEN-EVOLUTION; HIGHLY EFFICIENT; BIMETALLIC PHOSPHIDE; NANOPARTICLES; NIS; CO; HETEROSTRUCTURES; GRAPHENE; STRATEGY;
D O I
10.1021/acssuschemeng.0c08543
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Electrocatalytic water splitting is an emerging technique to produce sustainable hydrogen energy. However, it is still challengeable to fabricate a stable, efficient, and cost-effective electrocatalyst that can overcome the sluggish reaction kinetics of water electrolysis. In order to reduce the energy barrier, for the first time, metal-organic framework (MOF)-derived nickel (Ni) and nickel sulfide (NiS) heteronanoparticle-embedded semi-MOFs are prepared by a partial sulfurization strategy. These semi-MOF electrocatalysts inherit the advantages associated with MOF architecture and nanoparticles, unlike the traditional OER catalysts such as pristine MOFs or completely pyrolyzed MOFs. Due to the unique nanoarchitecture fabricated by Ni/NiS heteronanoparticles within semi-MOF nanosheets and a carbon nanotube (CNT) network (Ni-M@C-130), it displays exceptional bifunctional activity over the other transition metal-based electrocatalysts ever reported. It requires very small overpotentials for both oxygen evolution reaction (OER; eta(10) = 244 mV) and hydrogen evolution reaction (HER; eta(10) = 123 mV), with low Tafel slopes of 47.2 and 50.8 mV/dec, respectively. Furthermore, it exhibits overpotential as low as 1.565 V (eta(10)) on nickel foam (1 mg/cm(2)) substrates for overall water splitting. The outstanding catalytic performance of Ni-M@C-130 is attributed to the combined benefits of MOF nanosheets, synergistic interactions, and improved electrical conductivity and mechanical stability. This study describes the advantages of partial sulfurization of CNT-integrated MOFs in attaining electrochemically active heteronanoparticles within MOF nanosheets to accomplish improved bifunctional activity.
引用
收藏
页码:1920 / 1931
页数:12
相关论文
共 73 条
[1]   Semisacrificial Template Growth of Self-Supporting MOF Nanocomposite Electrode for Efficient Electrocatalytic Water Oxidation [J].
Cao, Changsheng ;
Ma, Dong-Dong ;
Xu, Qiang ;
Wu, Xin-Tao ;
Zhu, Qi-Long .
ADVANCED FUNCTIONAL MATERIALS, 2019, 29 (06)
[2]   Dynamic oxygen adsorption on single-atomic Ruthenium catalyst with high performance for acidic oxygen evolution reaction [J].
Cao, Linlin ;
Luo, Qiquan ;
Chen, Jiajia ;
Wang, Lan ;
Lin, Yue ;
Wang, Huijuan ;
Liu, Xiaokang ;
Shen, Xinyi ;
Zhang, Wei ;
Liu, Wei ;
Qi, Zeming ;
Jiang, Zheng ;
Yang, Jinlong ;
Yao, Tao .
NATURE COMMUNICATIONS, 2019, 10 (1)
[3]   Copper-Organic Framework Fabricated with CuS Nanoparticles: Synthesis, Electrical Conductivity, and Electrocatalytic Activities for Oxygen Reduction Reaction [J].
Cho, Keumnam ;
Han, Sung-Hwan ;
Suh, Myunghyun Paik .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2016, 55 (49) :15301-15305
[4]   Atomic-Scale CoOx Species in Metal-Organic Frameworks for Oxygen Evolution Reaction [J].
Dou, Shuo ;
Dong, Chung-Li ;
Hu, Zhe ;
Huang, Yu-Cheng ;
Chen, Jeng-Lung ;
Tao, Li ;
Yan, Dafeng ;
Chen, Dawei ;
Shen, Shaohua ;
Chou, Shulei ;
Wang, Shuangyin .
ADVANCED FUNCTIONAL MATERIALS, 2017, 27 (36)
[5]   Weakening of annual temperature cycle over the Tibetan Plateau since the 1870s [J].
Duan, Jianping ;
Esper, Jan ;
Buntgen, Ulf ;
Li, Lun ;
Xoplaki, Elena ;
Zhang, Huan ;
Wang, Lily ;
Fang, Yongjie ;
Luterbacher, Juerg .
NATURE COMMUNICATIONS, 2017, 8
[6]   Application of metal and metal oxide nanoparticles@MOFs [J].
Falcaro, Paolo ;
Ricco, Raffaele ;
Yazdi, Amirali ;
Imaz, Inhar ;
Furukawa, Shuhei ;
Maspoch, Daniel ;
Ameloot, Rob ;
Evans, Jack D. ;
Doonan, Christian J. .
COORDINATION CHEMISTRY REVIEWS, 2016, 307 :237-254
[7]   Controllable Preparation of Square Nickel Chalcogenide (NiS and NiSe2) Nanoplates for Superior Li/Na Ion Storage Properties [J].
Fan, Haosen ;
Yu, Hong ;
Wu, Xinglong ;
Zhang, Yu ;
Luo, Zhongzhen ;
Wang, Huanwen ;
Guo, Yuanyuan ;
Madhavi, Srinivasan ;
Yan, Qingya .
ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (38) :25261-25267
[8]   In situ conversion of metal (Ni, Co or Fe) foams into metal sulfide (Ni3S2, Co9S8 or FeS) foams with surface grown N-doped carbon nanotube arrays as efficient superaerophobic electrocatalysts for overall water splitting [J].
Guo, Mingrui ;
Qayum, Abdul ;
Dong, Shun ;
Jiao, Xiuling ;
Chen, Dairong ;
Wang, Ting .
JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (18) :9239-9247
[9]   Parallelized Reaction Pathway and Stronger Internal Band Bending by Partial Oxidation of Metal Sulfide-Graphene Composites: Important Factors of Synergistic Oxygen Evolution Reaction Enhancement [J].
Han, HyukSu ;
Kim, Kang Min ;
Choi, Heechae ;
Ali, Ghulam ;
Chung, Kyung Yoon ;
Hong, Yu-Rim ;
Choi, Junghyun ;
Kwon, Jiseok ;
Lee, Seung Woo ;
Lee, Jae Woong ;
Ryu, Jeong Ho ;
Song, Taeseup ;
Mhin, Sungwook .
ACS CATALYSIS, 2018, 8 (05) :4091-4102
[10]   A 2D NiFe Bimetallic Metal-Organic Frameworks for Efficient Oxygen Evolution Electrocatalysis [J].
Hao, Yongchao ;
Liu, Qinglin ;
Zhou, Ying ;
Yuan, Zeqian ;
Fan, Yanan ;
Ke, Zhuofeng ;
Su, Cheng-Yong ;
Li, Guangqin .
ENERGY & ENVIRONMENTAL MATERIALS, 2019, 2 (01) :18-21