Integrating Quantum Computing into Workflow Modeling and Execution

被引:32
作者
Weder, Benjamin [1 ]
Breitenbuecher, Uwe [1 ]
Leymann, Frank [1 ]
Wild, Karoline [1 ]
机构
[1] Univ Stuttgart, Inst Architecture Applicat Syst, Stuttgart, Germany
来源
2020 IEEE/ACM 13TH INTERNATIONAL CONFERENCE ON UTILITY AND CLOUD COMPUTING (UCC 2020) | 2020年
关键词
Quantum Computing; Quantum Software; Quantum Applications; Workflow Technology; Modeling Extension;
D O I
10.1109/UCC48980.2020.00046
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Quantum computing has the potential to significantly impact many application domains, as several quantum algorithms are promising to solve problems more efficiently than possible on classical computers. However, various complex pre- and post-processing tasks have to be performed when executing a quantum circuit, which require immense mathematical and technical knowledge. For example, calculations on today's quantum computers are noisy and require an error mitigation task after the execution. Hence, integrating classical applications with quantum circuits is a difficult challenge. In this paper, we introduce a modeling extension for imperative workflow languages to enable the integration of quantum computations and ease the orchestration of classical applications and quantum circuits. Further, we show how the extension can be mapped to native modeling constructs of extended workflow languages to retain the portability of the workflows. We validate the practical feasibility of our approach by applying our proposed extension to BPMN and introduce Quantum4BPMN.
引用
收藏
页码:279 / 291
页数:13
相关论文
共 58 条
  • [1] Adiabatic Quantum Computation Is Equivalent to Standard Quantum Computation
    Aharonov, Dorit
    van Dam, Wim
    Kempe, Julia
    Landau, Zeph
    Lloyd, Seth
    Regev, Oded
    [J]. SIAM REVIEW, 2008, 50 (04) : 755 - 787
  • [2] [Anonymous], 2008, ARXIV08080369
  • [3] [Anonymous], 2019, TASK BASED LANG TEAC, DOI DOI 10.1075/TBLT.13
  • [4] [Anonymous], 1999, QUANTUM COMPUTING
  • [5] [Anonymous], 2015, P 17 INT C INFORM IN
  • [6] Quantum supremacy using a programmable superconducting processor
    Arute, Frank
    Arya, Kunal
    Babbush, Ryan
    Bacon, Dave
    Bardin, Joseph C.
    Barends, Rami
    Biswas, Rupak
    Boixo, Sergio
    Brandao, Fernando G. S. L.
    Buell, David A.
    Burkett, Brian
    Chen, Yu
    Chen, Zijun
    Chiaro, Ben
    Collins, Roberto
    Courtney, William
    Dunsworth, Andrew
    Farhi, Edward
    Foxen, Brooks
    Fowler, Austin
    Gidney, Craig
    Giustina, Marissa
    Graff, Rob
    Guerin, Keith
    Habegger, Steve
    Harrigan, Matthew P.
    Hartmann, Michael J.
    Ho, Alan
    Hoffmann, Markus
    Huang, Trent
    Humble, Travis S.
    Isakov, Sergei V.
    Jeffrey, Evan
    Jiang, Zhang
    Kafri, Dvir
    Kechedzhi, Kostyantyn
    Kelly, Julian
    Klimov, Paul V.
    Knysh, Sergey
    Korotkov, Alexander
    Kostritsa, Fedor
    Landhuis, David
    Lindmark, Mike
    Lucero, Erik
    Lyakh, Dmitry
    Mandra, Salvatore
    McClean, Jarrod R.
    McEwen, Matthew
    Megrant, Anthony
    Mi, Xiao
    [J]. NATURE, 2019, 574 (7779) : 505 - +
  • [7] Quantum complexity theory
    Bernstein, E
    Vazirani, U
    [J]. SIAM JOURNAL ON COMPUTING, 1997, 26 (05) : 1411 - 1473
  • [8] Quantum machine learning
    Biamonte, Jacob
    Wittek, Peter
    Pancotti, Nicola
    Rebentrost, Patrick
    Wiebe, Nathan
    Lloyd, Seth
    [J]. NATURE, 2017, 549 (7671) : 195 - 202
  • [9] Brassard G., 2002, AMS Contemp. Math. Ser, V305, P53, DOI 10.1090/conm/305/05215
  • [10] Briegel HJ, 2009, NAT PHYS, V5, P19, DOI [10.1038/NPHYS1157, 10.1038/nphys1157]