On the approximate solution to an initial boundary valued problem for the Cahn-Hilliard equation

被引:3
|
作者
Rebelo, Paulo [1 ]
机构
[1] Univ Beira Interior, Dept Matemat, P-6201001 Covilha, Portugal
关键词
Adomian polynomials; Fourier Method; Cahn-Hilliard equation; Pattern formation; Initial homogeneous boundary valued problem; DIFFERENTIAL-EQUATIONS; SYSTEM;
D O I
10.1016/j.cnsns.2009.03.030
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The particular approximate solution of the initial boundary valued problem to the Cahn-Hilliard equation is provided. The Fourier Method is combined with the Adomian's decomposition method in order to provide an approximate solution that satisfy the initial and the boundary conditions. The approximate solution also satisfies the mass conservation principle. (c) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:225 / 231
页数:7
相关论文
共 50 条
  • [31] A Cahn-Hilliard equation with singular diffusion
    Schimperna, Giulio
    Pawlow, Irena
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 254 (02) : 779 - 803
  • [32] Astable FE method for the space-time solution of the Cahn-Hilliard equation
    Valseth, Eirik
    Romkes, Albert
    Kaul, Austin R.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2021, 441 (441)
  • [33] A Note on the Viscous Cahn-Hilliard Equation
    柯媛元
    尹景学
    NortheasternMathematicalJournal, 2004, (01) : 101 - 108
  • [34] The Cahn-Hilliard Equation with Logarithmic Potentials
    Cherfils, Laurence
    Miranville, Alain
    Zelik, Sergey
    MILAN JOURNAL OF MATHEMATICS, 2011, 79 (02) : 561 - 596
  • [35] The Cahn-Hilliard Equation with Logarithmic Potentials
    Laurence Cherfils
    Alain Miranville
    Sergey Zelik
    Milan Journal of Mathematics, 2011, 79 : 561 - 596
  • [36] Cahn-Hilliard equation with regularization term
    Mheich, Rim
    ASYMPTOTIC ANALYSIS, 2023, 133 (04) : 499 - 533
  • [37] Some generalizations of the Cahn-Hilliard equation
    Miranville, A
    ASYMPTOTIC ANALYSIS, 2000, 22 (3-4) : 235 - 259
  • [38] Optimal Control Problem for the Cahn-Hilliard/Allen-Cahn Equation with State Constraint
    Zhang, Xiaoli
    Li, Huilai
    Liu, Changchun
    APPLIED MATHEMATICS AND OPTIMIZATION, 2020, 82 (02) : 721 - 754
  • [39] A Fractional Inpainting Model Based on the Vector-Valued Cahn-Hilliard Equation
    Bosch, Jessica
    Stoll, Martin
    SIAM JOURNAL ON IMAGING SCIENCES, 2015, 8 (04): : 2352 - 2382
  • [40] Global attractor of the Cahn-Hilliard equation in Hk spaces
    Song, Lingyu
    Zhang, Yindi
    Ma, Tian
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 355 (01) : 53 - 62