Multishelled NixCo3-xO4 Hollow Microspheres Derived from Bimetal Organic Frameworks as Anode Materials for High-Performance Lithium-Ion Batteries

被引:120
|
作者
Wu, Lan-Lan [1 ,2 ]
Wang, Zhuo [1 ]
Long, Yan [1 ,2 ]
Li, Jian [1 ,2 ]
Liu, Yu [1 ,2 ]
Wang, Qi-Shun [1 ,2 ]
Wang, Xiao [1 ]
Song, Shu-Yan [1 ]
Liu, Xiaogang [3 ]
Zhang, Hong-Jie [1 ]
机构
[1] Chinese Acad Sci, Changchun Inst Appl Chem, State Key Lab Rare Earth Resource Utilizat, 5625 Renmin St, Changchun 130022, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Natl Univ Singapore, Dept Chem, Sci Dr 3, Singapore 117543, Singapore
基金
中国国家自然科学基金;
关键词
ENHANCED ELECTROCHEMICAL PERFORMANCE; TRANSITION-METAL OXIDE; ACCURATE CONTROL; HIGH-CAPACITY; STORAGE; NANOSTRUCTURES; TEMPLATE; NANOTUBES; POLYHEDRA; SPHERES;
D O I
10.1002/smll.201604270
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Metal organic frameworks (MOFs) featuring versatile topological architectures are considered to be efficient self-sacrificial templates to achieve mesoporous nanostructured materials. A facile and cost-efficient strategy is developed to scalably fabricate binary metal oxides with complex hollow interior structures and tunable compositions. Bimetal organic frameworks of Ni-Co-BTC solid microspheres with diverse Ni/Co ratios are readily prepared by solvothermal method to induce the Ni2Co3-xO4 multishelled hollow microspheres through a morphology-inherited annealing treatment. The obtained mixed metal oxides are demonstrated to be composed of nanometer-sized subunits in the shells and large void spaces left between adjacent shells. When evaluated as anode materials for lithium-ion batteries, Ni2Co3-xO4-0.1 multishelled hollow microspheres deliver a high reversible capacity of 1109.8 mAh g(-1) after 100 cycles at a current density of 100 mA g(-1) with an excellent high-rate capability. Appropriate capacities of 832 and 673 mAh g(-1) could also be retained after 300 cycles at large currents of 1 and 2 A g(-1), respectively. These prominent electrochemical properties raise a concept of synthesizing MOFs-derived mixed metal oxides with multishelled hollow structures for progressive lithium-ion batteries.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Metal-Organic Framework Derived Co3O4/C Composite as High-Performance Anode Material for Lithium-Ion Batteries
    Gou Lei
    Zhao Shao-Pan
    Liu Peng-Gang
    Yang Jiang-Fan
    Fan Xiao-Yong
    Li Dong-Lin
    CHINESE JOURNAL OF INORGANIC CHEMISTRY, 2019, 35 (10) : 1834 - 1842
  • [42] Electrospun porous ZnCo2O4 nanotubes as a high-performance anode material for lithium-ion batteries
    Luo, Wei
    Hu, Xianluo
    Sun, Yongming
    Huang, Yunhui
    JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (18) : 8916 - 8921
  • [43] Construction of complex WO3-SnO2 hollow nanospheres as a high-performance anode for lithium-ion batteries
    Huang, Hui
    Ju, Xiaokang
    Li, Han
    Qu, Baihua
    Wang, Taihong
    JOURNAL OF ALLOYS AND COMPOUNDS, 2018, 744 : 375 - 380
  • [44] Amorphous S-doped NixCo3-xO4 for high-performance asymmetric supercapacitors
    Li, Yanhua
    Li, Lingxiao
    Du, Fuyou
    ELECTROCHIMICA ACTA, 2022, 434
  • [45] NC@Bi2S3 Nanospheres as High-Performance Anode Materials for Lithium-Ion Batteries
    Kang, Wanda
    Li, Sen
    Liu, Xingchen
    Yan, Kun
    Zhang, Wengao
    Fan, Youkang
    Pan, Yuxiang
    Feng, Jun
    ACS OMEGA, 2024, 9 (49): : 48755 - 48765
  • [46] Ionothermal Synthesis of Cobalt Vanadate Nanoparticles As High-Performance Anode Materials for Lithium-Ion Batteries
    Zhao, Yu
    Guan, Ruxin
    Hou, Zhenjiang
    Li, Hongwei
    Li, Guixian
    Li, Shiyou
    Mao, Liping
    JOURNAL OF ELECTRONIC MATERIALS, 2022, 51 (06) : 3260 - 3275
  • [47] Disordered materials for high-performance lithium-ion batteries: A review
    Wang, Zhaoyang
    Du, Zijuan
    Wang, Luoqing
    He, Guanjie
    Parkin, Ivan P.
    Zhang, Yanfei
    Yue, Yuanzheng
    NANO ENERGY, 2024, 121
  • [48] α-Ga2O3@Chitosan-Derived Carbon as High-Performance Anode for Lithium-Ion Batteries
    Lv, Yamin
    Wang, Kaizhao
    Fu, Jiaxin
    Wang, Kaijun
    Zhang, Weijun
    Wang, Jing
    Hu, Jin
    ENERGY TECHNOLOGY, 2023, 11 (11)
  • [49] Mesoporous nanostructured Co3O4 derived from MOF template: a high-performance anode material for lithium-ion batteries
    Li, Chao
    Chen, Taiqiang
    Xu, Weijing
    Lou, Xiaobing
    Pan, Likun
    Chen, Qun
    Hu, Bingwen
    JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (10) : 5585 - 5591
  • [50] FeP nanoparticles derived from metal-organic frameworks/GO as high-performance anode material for lithium ion batteries
    Gao, Man
    Liu, Xiaowu
    Yang, Hai
    Yu, Yan
    SCIENCE CHINA-CHEMISTRY, 2018, 61 (09) : 1151 - 1158