PD-1 blockade in subprimed CD8 cells induces dysfunctional PD-1+CD38hi cells and anti-PD-1 resistance

被引:231
作者
Verma, Vivek [1 ,11 ]
Shrimalim, Rajeev K. [1 ,12 ]
Ahmadm, Shamim [1 ,13 ]
Dai, Winjie [1 ]
Wang, Hua [1 ]
Lu, Sumin [1 ]
Nandrelm, Rahul [1 ,11 ]
Gaur, Pankaj [1 ,11 ]
Lopez, Jose [11 ]
Sade-Feldman, Moshe [2 ,3 ]
Yizhak, Keren [3 ]
Bjorgaard, Stacey L. [2 ,3 ]
Flaherty, Keith T. [2 ]
Wargo, Jennifer A. [4 ]
Boland, Genevieve M. [5 ]
Sullivan, Ryan J. [2 ]
Getz, Gad [2 ,3 ,6 ]
Hammond, Scott A. [7 ]
Tan, Ming [8 ]
Qi, Jingjing [9 ]
Wong, Phillip [9 ]
Merghoub, Taha [9 ,10 ]
Wolchok, Jedd [9 ,10 ]
Hacohen, Nir [2 ,3 ]
Janik, John E. [1 ,14 ]
Mkrtichyan, Mikayel [1 ,11 ,15 ]
Gupta, Seema [1 ,11 ]
Khleif, Samir N. [1 ,11 ]
机构
[1] Augusta Univ, Georgia Canc Ctr, Augusta, GA 30912 USA
[2] Massachusetts Gen Hosp, Dept Med, Canc Ctr, Boston, MA 02114 USA
[3] Broad Inst MIT & Harvard, Cambridge, MA 02142 USA
[4] Univ Texas MD Anderson Canc Ctr, Dept Surg Oncol, Houston, TX 77030 USA
[5] Massachusetts Gen Hosp, Dept Surg, Boston, MA 02114 USA
[6] Massachusetts Gen Hosp, Dept Pathol, Boston, MA 02114 USA
[7] MedImmune LLC, Gaithersburg, MD USA
[8] Georgetown Univ, Dept Biostat Bioinformat & Biomath, Washington, DC USA
[9] Mem Sloan Kettering Canc Ctr, 1275 York Ave, New York, NY 10021 USA
[10] Weill Cornell Med & Grad Sch, New York, NY USA
[11] Georgetown Univ, Med Ctr, Lombardi Comprehens Canc Ctr, Washington, DC 20007 USA
[12] Univ Texas MD Anderson Canc Ctr, Therapeut Discovery, Houston, TX 77030 USA
[13] Five Prime Therapeut Inc, San Francisco, CA USA
[14] Incyte Inc, Wilmington, DE USA
[15] A2 Biotherapeut, Agoura Hills, CA USA
基金
美国国家卫生研究院;
关键词
T-CELLS; ACQUIRED-RESISTANCE; CANCER; IMMUNOTHERAPY; EXPRESSION; VACCINE; ACTIVATION; ANTIGEN; TUMORS; MECHANISM;
D O I
10.1038/s41590-019-0441-y
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
Understanding resistance to antibody to programmed cell death protein 1 (PD-1; anti-PD-1) is crucial for the development of reversal strategies. In anti-PD-1-resistant models, simultaneous anti-PD-1 and vaccine therapy reversed resistance, while PD-1 blockade before antigen priming abolished therapeutic outcomes. This was due to induction of dysfunctional PD-1(+)CD38(hi) CD8(+) cells by PD-1 blockade in suboptimally primed CD8 cell conditions induced by tumors. This results in erroneous T cell receptor signaling and unresponsiveness to antigenic restimulation. On the other hand, PD-1 blockade of optimally primed CD8 cells prevented the induction of dysfunctional CD8 cells, reversing resistance. Depleting PD-1(+)CD38(+) CD8(+) cells enhanced therapeutic outcomes. Furthermore, non-responding patients showed more PD-1(+)CD38(+)CD8(+) cells in tumor and blood than responders. In conclusion, the status of CD8(+) T cell priming is a major contributor to anti-PD-1 therapeutic resistance. PD-1 blockade in unprimed or suboptimally primed CD8 cells induces resistance through the induction of PD-1(+)CD38(hi) CD8(+) cells that is reversed by optimal priming. PD-1(+)CD38(h)(i) CD8(+) cells serve as a predictive and therapeutic biomarker for anti-PD-1 treatment. Sequencing of anti-PD-1 and vaccine is crucial for successful therapy.
引用
收藏
页码:1231 / +
页数:19
相关论文
共 55 条
[1]   Akt1 and-2 inhibition diminishes terminal differentiation and enhances central memory CD8+ T-cell proliferation and survival [J].
Abu Eid, Rasha ;
Friedman, Kevin M. ;
Mkrtichyan, Mikayel ;
Walens, Andrea ;
King, William ;
Janik, John ;
Khleif, Samir N. .
ONCOIMMUNOLOGY, 2015, 4 (05)
[2]   Tailoring T-cell receptor signals by proximal negative feedback mechanisms [J].
Acuto, Oreste ;
Di Bartolo, Vincenzo ;
Michel, Frederique .
NATURE REVIEWS IMMUNOLOGY, 2008, 8 (09) :699-712
[3]   The immunogenicity of colorectal cancers with high-degree microsatellite instability [J].
Banerjea A. ;
Bustin S.A. ;
Dorudi S. .
World Journal of Surgical Oncology, 3 (1)
[4]   Selective expansion of a subset of exhausted CD8 T cells by αPD-L1 blockade [J].
Blackburn, Shawn D. ;
Shin, Haina ;
Freeman, Gordon J. ;
Wherry, E. John .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2008, 105 (39) :15016-15021
[5]   Molecular and Biochemical Aspects of the PD-1 Checkpoint Pathway [J].
Boussiotis, Vassiliki A. .
NEW ENGLAND JOURNAL OF MEDICINE, 2016, 375 (18) :1767-1778
[6]   Radiation, Immune Checkpoint Blockade and the Abscopal Effect: A Critical Review on Timing, Dose and Fractionation [J].
Buchwald, Zachary S. ;
Wynne, Jacob ;
Nasti, Tahseen H. ;
Zhu, Simeng ;
Mourad, Waleed ;
Yan, Weisi ;
Gupta, Seema ;
Khleif, Samir N. ;
Khan, Mohammad K. .
FRONTIERS IN ONCOLOGY, 2018, 8
[7]   CD38-NAD+Axis Regulates Immunotherapeutic Anti-Tumor T Cell Response [J].
Chatterjee, Shilpak ;
Daenthanasanmak, Anusara ;
Chakraborty, Paramita ;
Wyatt, Megan W. ;
Dhar, Payal ;
Selvam, Shanmugam Panneer ;
Fu, Jianing ;
Zhang, Jinyu ;
Hung Nguyen ;
Kang, Inhong ;
Toth, Kyle ;
Al-Homrani, Mazen ;
Husain, Mahvash ;
Beeson, Gyda ;
Ball, Lauren ;
Helke, Kristi ;
Husain, Shahid ;
Garrett-Mayer, Elizabeth ;
Hardiman, Gary ;
Mehrotra, Meenal ;
Nishimura, Michael I. ;
Beeson, Craig C. ;
Bupp, Melanie Gubbels ;
Wu, Jennifer ;
Ogretmen, Besim ;
Paulos, Chrystal M. ;
Rathmell, Jeffery ;
Yu, Xue-Zhong ;
Mehrotra, Shikhar .
CELL METABOLISM, 2018, 27 (01) :85-+
[8]   Molecular mechanisms of T cell co-stimulation and co-inhibition [J].
Chen, Lieping ;
Flies, Dallas B. .
NATURE REVIEWS IMMUNOLOGY, 2013, 13 (04) :227-242
[9]   PD-1 expression on HIV-specific T cells is associated with T-cell exhaustion and disease progression [J].
Day, Cheryl L. ;
Kaufmann, Daniel E. ;
Kiepiela, Photini ;
Brown, Julia A. ;
Moodley, Eshia S. ;
Reddy, Sharon ;
Mackey, Elizabeth W. ;
Miller, Joseph D. ;
Leslie, Alasdair J. ;
DePierres, Chantal ;
Mncube, Zenele ;
Duraiswamy, Jaikumar ;
Zhu, Baogong ;
Eichbaum, Quentin ;
Altfeld, Marcus ;
Wherry, E. John ;
Coovadia, Hoosen M. ;
Goulder, Philip J. R. ;
Klenerman, Paul ;
Ahmed, Rafi ;
Freeman, Gordon J. ;
Walker, Bruce D. .
NATURE, 2006, 443 (7109) :350-354
[10]  
Dong HD, 2002, NAT MED, V8, P793, DOI 10.1038/nm730