EXPLOITING SPARSITY FOR ROBUST SENSOR NETWORK LOCALIZATION IN MIXED LOS/NLOS ENVIRONMENTS

被引:0
作者
Fin, Di [1 ]
Yin, Feng [2 ]
Fauss, Michael [3 ]
Muma, Michael [1 ]
Zoubir, Abdelhak M. [1 ]
机构
[1] Tech Univ Darmstadt, Signal Proc Grp, Darmstadt, Germany
[2] Chinese Univ Hong Kong, Sch Sci & Engn, Shenzhen, Peoples R China
[3] Princeton Univ, Dept Elect Engn, Princeton, NJ 08544 USA
来源
2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING | 2020年
关键词
Cooperative localization; non-line-of-sight; sparsity; semi-definite programming; COOPERATIVE LOCALIZATION; OPTIMIZATION; GEOLOCATION; TRACKING;
D O I
10.1109/icassp40776.2020.9054501
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
We address the problem of robust network localization in realistic mixed LOS/NLOS environments. We make use of the fact that the bias of range measurement errors is not only non-negative but also sparse when LOS dominates, which has been long overlooked in the existing literature. To exploit these two properties, we introduce a sparsity-promoting regularization term and relax the resulting optimization problem to a semi-definite programming (SDP) problem. The proposed method admits a neat mathematical formulation and is computationally cheap. Moreover, its global convergence is guaranteed and it achieves good robustness against NLOS measurements. In numerical results, the proposed method outperforms representative state-of-the-art SDP approaches, in terms of both localization accuracy and computational efficiency.
引用
收藏
页码:5915 / 5919
页数:5
相关论文
共 22 条
  • [11] NLOS Identification and Mitigation for Localization Based on UWB Experimental Data
    Marano, Stefano
    Gifford, Wesley M.
    Wymeersch, Henk
    Win, Moe Z.
    [J]. IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2010, 28 (07) : 1026 - 1035
  • [12] Soft Range Information for Network Localization
    Mazuelas, Santiago
    Conti, Andrea
    Allen, Jeffery C.
    Win, Moe Z.
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2018, 66 (12) : 3155 - 3168
  • [13] Scheidt F, 2016, EUR SIGNAL PR CONF, P190, DOI 10.1109/EUSIPCO.2016.7760236
  • [14] Large-Scale Convex Optimization for Dense Wireless Cooperative Networks
    Shi, Yuanming
    Zhang, Jun
    O'Donoghue, Brendan
    Letaief, Khaled B.
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2015, 63 (18) : 4729 - 4743
  • [15] Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones
    Sturm, JF
    [J]. OPTIMIZATION METHODS & SOFTWARE, 1999, 11-2 (1-4) : 625 - 653
  • [16] Second-order cone programming relaxation of sensor network localization
    Tseng, Paul
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2007, 18 (01) : 156 - 185
  • [17] Cooperative Localization in NLOS Environments Using Semidefinite Programming
    Vaghefi, Reza Monir
    Buehrer, R. Michael
    [J]. IEEE COMMUNICATIONS LETTERS, 2015, 19 (08) : 1382 - 1385
  • [18] Efficient Multisensor Localization for the Internet of Things Exploring a new class of scalable localization algorithms
    Win, Moe Z.
    Meyer, Florian
    Liu, Zhenyu
    Dai, Wenhan
    Bartoletti, Stefania
    Conti, Andrea
    [J]. IEEE SIGNAL PROCESSING MAGAZINE, 2018, 35 (05) : 153 - 167
  • [19] Cooperative Localization in Wireless Networks
    Wymeersch, Henk
    Lien, Jaime
    Win, Moe Z.
    [J]. PROCEEDINGS OF THE IEEE, 2009, 97 (02) : 427 - 450
  • [20] Cooperative Localization in WSNs Using Gaussian Mixture Modeling: Distributed ECM Algorithms
    Yin, Feng
    Fritsche, Carsten
    Jin, Di
    Gustafsson, Fredrik
    Zoubir, Abdelhak M.
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2015, 63 (06) : 1448 - 1463