Homogenization of a class of quasilinear elliptic equations in high-contrast fissured media

被引:11
作者
Amaziane, B.
Pankratov, L.
Piatnitski, A.
机构
[1] Univ Pau & Pays Adour, CNRS, UMR 5142, Lab Math Appl, F-64000 Pau, France
[2] Narvik Univ Coll, N-8505 Narvik, Norway
[3] Russian Acad Sci, PN Lebedev Phys Inst, Moscow 119991, Russia
[4] B Verkin Inst Low Temp Phys & Engn, Dept Math, UA-61103 Kharkov, Ukraine
基金
俄罗斯基础研究基金会;
关键词
D O I
10.1017/S0308210500004911
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of the paper is to study the asymptotic behaviour of the solution of a quasilinear elliptic equation of the form -div (a(epsilon)(x) vertical bar del u(epsilon)vertical bar(p-2)del mu(epsilon)) + g(x)vertical bar mu(epsilon)vertical bar(p-2)mu(epsilon) = S-epsilon(x) in ohm, with a high-contrast discontinuous coefficient a(epsilon)(x), where E is the parameter characterizing the scale of the microstucture. The coefficient a(epsilon)(x) is assumed to degenerate everywhere in the domain ohm except in a thin connected microstructure of asymptotically small measure. It is shown that the asymptotical behaviour of the solution u(epsilon) as epsilon -> 0 is described by a homogenized quasilinear equation with the coefficients calculated by local energetic characteristics of the domain ohm.
引用
收藏
页码:1131 / 1155
页数:25
相关论文
共 27 条
[21]  
PANKOV A., 1997, G CONVERGENCE HOMOGE
[22]   Nonlinear "double porosity" type model [J].
Pankratov, L ;
Piatnitski, A .
COMPTES RENDUS MATHEMATIQUE, 2002, 334 (05) :435-440
[23]   Γ-convergence of nonlinear functionals in thin reticulated structures [J].
Pankratov, L .
COMPTES RENDUS MATHEMATIQUE, 2002, 335 (03) :315-320
[24]   Asymptotic analysis of a double porosity model with thin fissures [J].
Pankratov, LS ;
Rybalko, VA .
SBORNIK MATHEMATICS, 2003, 194 (1-2) :123-150
[25]  
Stein E. M., 1970, SINGULAR INTEGRALS D
[26]  
SVISCHEVA EV, 1991, OPERATOR THEORY SUBH, P126
[27]  
Trudinger NS, 1977, ELLIPTIC PARTIAL DIF, DOI DOI 10.1007/978-3-642-96379-7