Homogenization of a class of quasilinear elliptic equations in high-contrast fissured media

被引:11
作者
Amaziane, B.
Pankratov, L.
Piatnitski, A.
机构
[1] Univ Pau & Pays Adour, CNRS, UMR 5142, Lab Math Appl, F-64000 Pau, France
[2] Narvik Univ Coll, N-8505 Narvik, Norway
[3] Russian Acad Sci, PN Lebedev Phys Inst, Moscow 119991, Russia
[4] B Verkin Inst Low Temp Phys & Engn, Dept Math, UA-61103 Kharkov, Ukraine
基金
俄罗斯基础研究基金会;
关键词
D O I
10.1017/S0308210500004911
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of the paper is to study the asymptotic behaviour of the solution of a quasilinear elliptic equation of the form -div (a(epsilon)(x) vertical bar del u(epsilon)vertical bar(p-2)del mu(epsilon)) + g(x)vertical bar mu(epsilon)vertical bar(p-2)mu(epsilon) = S-epsilon(x) in ohm, with a high-contrast discontinuous coefficient a(epsilon)(x), where E is the parameter characterizing the scale of the microstucture. The coefficient a(epsilon)(x) is assumed to degenerate everywhere in the domain ohm except in a thin connected microstructure of asymptotically small measure. It is shown that the asymptotical behaviour of the solution u(epsilon) as epsilon -> 0 is described by a homogenized quasilinear equation with the coefficients calculated by local energetic characteristics of the domain ohm.
引用
收藏
页码:1131 / 1155
页数:25
相关论文
共 27 条
[11]  
Braides A., 1998, Oxford Lecture Series in Mathematics and its Applications, V12
[12]   Homogenization of a class of non-uniformly elliptic monotonic operators [J].
Briane, M .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2002, 48 (01) :137-158
[13]   Homogenization of the anisotropic heterogeneous linearized elasticity system in thin reticulated structures [J].
Casado-Díaz, J ;
Luna-Laynez, M .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2004, 134 :1041-1083
[14]  
Cioranescu D., 1999, APPL MATH SCI, V136
[15]  
DALMASO G, 1993, PROGR NONLINEAR DIFF, V8
[16]   Numerical homogenization and correctors for nonlinear elliptic equations [J].
Efendiev, Y ;
Pankov, A .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2004, 65 (01) :43-68
[17]  
Hornung U, 1997, INTERDISCIPLINARY AP, V6
[18]  
Ladyzhenskaya O. A., 1973, LINEAR QUASILINEAR E
[19]  
Marchenko V. A., 2003, HOMOGENIZED MODELS M
[20]  
Nguetseng G., 2003, ELECTRON J DIFFER EQ, V36, P1