Homogenization of a class of quasilinear elliptic equations in high-contrast fissured media

被引:11
作者
Amaziane, B.
Pankratov, L.
Piatnitski, A.
机构
[1] Univ Pau & Pays Adour, CNRS, UMR 5142, Lab Math Appl, F-64000 Pau, France
[2] Narvik Univ Coll, N-8505 Narvik, Norway
[3] Russian Acad Sci, PN Lebedev Phys Inst, Moscow 119991, Russia
[4] B Verkin Inst Low Temp Phys & Engn, Dept Math, UA-61103 Kharkov, Ukraine
基金
俄罗斯基础研究基金会;
关键词
D O I
10.1017/S0308210500004911
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of the paper is to study the asymptotic behaviour of the solution of a quasilinear elliptic equation of the form -div (a(epsilon)(x) vertical bar del u(epsilon)vertical bar(p-2)del mu(epsilon)) + g(x)vertical bar mu(epsilon)vertical bar(p-2)mu(epsilon) = S-epsilon(x) in ohm, with a high-contrast discontinuous coefficient a(epsilon)(x), where E is the parameter characterizing the scale of the microstucture. The coefficient a(epsilon)(x) is assumed to degenerate everywhere in the domain ohm except in a thin connected microstructure of asymptotically small measure. It is shown that the asymptotical behaviour of the solution u(epsilon) as epsilon -> 0 is described by a homogenized quasilinear equation with the coefficients calculated by local energetic characteristics of the domain ohm.
引用
收藏
页码:1131 / 1155
页数:25
相关论文
共 27 条
[1]   Homogenization of a degenerate triple porosity model with thin fissures [J].
Amaziane, B ;
Goncharenko, M ;
Pankratov, L .
EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2005, 16 :335-359
[2]   ΓD-convergence for a class of quasilinear elliptic equations in thin structures [J].
Amaziane, B ;
Goncharenko, M ;
Pankratov, L .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2005, 28 (15) :1847-1865
[3]   Characterization of the flow for a single fluid in an excavation damaged zone [J].
Amaziane, B ;
Bourgeat, A ;
Goncharenko, M ;
Pankratov, L .
COMPTES RENDUS MECANIQUE, 2004, 332 (01) :79-84
[4]  
[Anonymous], 1979, MATH USSR SB
[5]   DERIVATION OF THE DOUBLE POROSITY MODEL OF SINGLE-PHASE FLOW VIA HOMOGENIZATION THEORY [J].
ARBOGAST, T ;
DOUGLAS, J ;
HORNUNG, U .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1990, 21 (04) :823-836
[6]  
Bourgeat A, 2003, ASYMPTOTIC ANAL, V34, P311
[7]   A general double porosity model [J].
Bourgeat, A ;
Goncharenko, M ;
Panfilov, M ;
Pankratov, L .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE II FASCICULE B-MECANIQUE PHYSIQUE ASTRONOMIE, 1999, 327 (12) :1245-1250
[8]  
BOURGEAT A, 2002, CONT MATH, V295, P75
[9]  
Bourgeat A., 2003, Appl. Anal., V82, P103, DOI [10.1080/0003681031000063739, DOI 10.1080/0003681031000063739]
[10]  
Braides A, 2004, ASYMPTOTIC ANAL, V39, P281