Scalable Assembly of Flexible Ultrathin All-in-One Zinc-Ion Batteries with Highly Stretchable, Editable, and Customizable Functions

被引:161
作者
Yao, Minjie [1 ]
Yuan, Zishun [1 ]
Li, Saisai [1 ]
He, Tingwei [1 ]
Wang, Rui [1 ]
Yuan, Mingjian [1 ]
Niu, Zhiqiang [1 ]
机构
[1] Nankai Univ, Coll Chem, Renewable Energy Convers & Storage Ctr, Key Lab Adv Energy Mat Chem,Minist Educ, Tianjin 300071, Peoples R China
基金
中国国家自然科学基金;
关键词
all‐ in‐ one structure; aqueous zinc‐ ion batteries; integrated devices; mechanical properties; ultrathin devices; ELECTRODE MATERIALS; CARBON NANOTUBE; SUPERCAPACITORS; DEVICES; FILM; CHEMISTRY;
D O I
10.1002/adma.202008140
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Aqueous zinc-ion batteries (ZIBs) are considered to be a promising candidate for flexible energy storage devices due to their high safety and low cost. However, the scalable assembly of flexible ZIBs is still a challenge. Here, a scalable assembly strategy is developed to fabricate flexible ZIBs with an ultrathin all-in-one structure by combining blade coating with a rolling assembly process. Such a unique all-in-one integrated structure can effectively avoid the relative displacement or detachment between neighboring components to ensure continuous and effective ion- and/or loading-transfer capacity under external deformation, resulting in excellent structural and electrochemical stability. Furthermore, the ultrathin all-in-one ZIBs can be tailored and edited controllably into desired shapes and structures, further extending their editable, stretchable, and shape-customized functions. In addition, the ultrathin all-in-one ZIBs display the ability to integrate with perovskite solar cells to achieve an energy harvesting and storage integrated system. These enlighten a broad area of flexible ZIBs to be compatible with highly flexible and wearable electronics. The scaling-up assembly strategy provides a route to design other ultrathin all-in-one energy storage devices with stretchable, editable, and customizable behaviors.
引用
收藏
页数:9
相关论文
共 59 条
[1]   Review of PVA-based gel polymer electrolytes in flexible solid-state supercapacitors: Opportunities and challenges [J].
Alipoori, Saeideh ;
Mazinani, Saeedeh ;
Aboutalebi, Seyed Hamed ;
Sharif, Farhad .
JOURNAL OF ENERGY STORAGE, 2020, 27
[2]   Scientific Challenges for the Implementation of Zn-Ion Batteries [J].
Blanc, Lauren E. ;
Kundu, Dipan ;
Nazar, Linda F. .
JOULE, 2020, 4 (04) :771-799
[3]   Roadmap for advanced aqueous batteries: From design of materials to applications [J].
Chao, Dongliang ;
Zhou, Wanhai ;
Xie, Fangxi ;
Ye, Chao ;
Li, Huan ;
Jaroniec, Mietek ;
Qiao, Shi-Zhang .
SCIENCE ADVANCES, 2020, 6 (21)
[4]   Gel Polymer Electrolytes for Electrochemical Energy Storage [J].
Cheng, Xunliang ;
Pan, Jian ;
Zhao, Yang ;
Liao, Meng ;
Peng, Huisheng .
ADVANCED ENERGY MATERIALS, 2018, 8 (07)
[5]   Spin-Symmetry-Selective Generation of Ultracompact Optical Vortices in Nanoapertures without Chirality [J].
Cui, Tong ;
Zhang, Mingqian ;
Sun, Lin ;
Zhang, Shuyin ;
Wang, Jia ;
Bai, Benfeng ;
Sun, Hong-Bo .
SMALL STRUCTURES, 2020, 1 (02)
[6]   Towards flexible solid-state supercapacitors for smart and wearable electronics [J].
Dubal, Deepak P. ;
Chodankar, Nilesh R. ;
Kim, Do-Heyoung ;
Gomez-Romero, Pedro .
CHEMICAL SOCIETY REVIEWS, 2018, 47 (06) :2065-2129
[7]   Recent Advances in Aqueous Zinc-Ion Batteries [J].
Fang, Guozhao ;
Zhou, Jiang ;
Pan, Anqiang ;
Liang, Shuquan .
ACS ENERGY LETTERS, 2018, 3 (10) :2480-2501
[8]   Flexible Batteries: From Mechanics to Devices [J].
Fu, Kun Kelvin ;
Cheng, Jian ;
Li, Teng ;
Hu, Liangbing .
ACS ENERGY LETTERS, 2016, 1 (05) :1065-1079
[9]  
Gere J.M., 2009, Mechanics of Materials, V7th ed.
[10]   Multi-functional Flexible Aqueous Sodium-Ion Batteries with High Safety [J].
Guo, Zhaowei ;
Zhao, Yang ;
Ding, Yuxue ;
Dong, Xiaoli ;
Chen, Long ;
Cao, Jingyu ;
Wang, Changchun ;
Xia, Yongyao ;
Peng, Huisheng ;
Wang, Yonggang .
CHEM, 2017, 3 (02) :348-362