Learning moment-based fast local binary descriptor

被引:4
|
作者
Bellarbi, Abdelkader [1 ,2 ]
Zenati, Nadia [2 ]
Otmane, Samir [1 ]
Belghit, Hayet [2 ]
机构
[1] Univ Evry, Informat Biol Integrat & Syst Complexes IBISC Lab, Evry, France
[2] CDTA, Robot Dept, Algiers, Algeria
关键词
binary descriptor; moments; pattern recognition; computer vision; augmented reality; SIFT DESCRIPTOR; PATTERN-RECOGNITION; REPRESENTATION; FEATURES;
D O I
10.1117/1.JEI.26.2.023006
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Recently, binary descriptors have attracted significant attention due to their speed and low memory consumption; however, using intensity differences to calculate the binary descriptive vector is not efficient enough. We propose an approach to binary description called POLAR_MOBIL, in which we perform binary tests between geometrical and statistical information using moments in the patch instead of the classical intensity binary test. In addition, we introduce a learning technique used to select an optimized set of binary tests with low correlation and high variance. This approach offers high distinctiveness against affine transformations and appearance changes. An extensive evaluation on well-known benchmark datasets reveals the robustness and the effectiveness of the proposed descriptor, as well as its good performance in terms of low computation complexity when compared with state-of-the-art real-time local descriptors. (C) 2017 SPIE and IS&T
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Moment-based local binary patterns: A novel descriptor for invariant pattern recognition applications
    Papakostas, G. A.
    Koulouriotis, D. E.
    Karakasis, E. G.
    Tourassis, V. D.
    NEUROCOMPUTING, 2013, 99 : 358 - 371
  • [2] MOBIL: A Moments based Local Binary Descriptor
    Bellarbi, Abdelkadar
    Otamane, Samir
    Zenati, Nadia
    Benbelkacem, Samir
    2014 IEEE INTERNATIONAL SYMPOSIUM ON MIXED AND AUGMENTED REALITY (ISMAR) - SCIENCE AND TECHNOLOGY, 2014, : 251 - +
  • [3] Learning Rotation-Invariant Local Binary Descriptor
    Duan, Yueqi
    Lu, Jiwen
    Feng, Jianjiang
    Zhou, Jie
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2017, 26 (08) : 3636 - 3651
  • [4] CoMo: a scale and rotation invariant compact composite moment-based descriptor for image retrieval
    Vassou, S. A.
    Anagnostopoulos, N.
    Christodoulou, K.
    Amanatiadis, A.
    Chatzichristofis, S. A.
    MULTIMEDIA TOOLS AND APPLICATIONS, 2019, 78 (03) : 2765 - 2788
  • [5] DoG keypoint detection based fast binary descriptor
    Liu K.
    Wang K.
    Yang X.-M.
    Zheng X.-J.
    Guangxue Jingmi Gongcheng/Optics and Precision Engineering, 2020, 28 (02): : 485 - 496
  • [6] 3D Polynomial Interpolation Based Local Binary Descriptor
    Kobzili, Elhaouari
    Larbes, Cherif
    Allam, Ahmed
    Demim, Fethi
    ADVANCES IN COMPUTING SYSTEMS AND APPLICATIONS, 2019, 50 : 204 - 214
  • [7] BRIEF: Computing a Local Binary Descriptor Very Fast
    Calonder, Michael
    Lepetit, Vincent
    Oezuysal, Mustafa
    Trzcinski, Tomasz
    Strecha, Christoph
    Fua, Pascal
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2012, 34 (07) : 1281 - 1298
  • [8] RLDB: Robust Local Difference Binary Descriptor with Integrated Learning-based Optimization
    Sun, Huitao
    Li, Muguo
    KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS, 2018, 12 (09): : 4429 - 4447
  • [9] On moment-based local operators for detecting image patterns
    Sluzek, A
    IMAGE AND VISION COMPUTING, 2005, 23 (03) : 287 - 298
  • [10] Moment-based techniques for image retrieval
    Di Ruberto, Cecilia
    Morgera, Andrea
    DEXA 2008: 19TH INTERNATIONAL CONFERENCE ON DATABASE AND EXPERT SYSTEMS APPLICATIONS, PROCEEDINGS, 2008, : 155 - 159