Convergence of the solutions of the discounted Hamilton-Jacobi equation: A counterexample

被引:11
作者
Ziliotto, Bruno [1 ]
机构
[1] Univ Paris 09, PSL Res Inst, CNRS, CEREMADE, Pl Marechal de Lattre de Tassigny, F-75016 Paris, France
来源
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES | 2019年 / 128卷
关键词
Hamilton-Jacobi equations; Viscosity solutions; Stochastic games; Zero-Sum games; REPEATED GAMES;
D O I
10.1016/j.matpur.2019.04.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper provides a counterexample about the asymptotic behavior of the solutions of a discounted Hamilton-Jacobi equation, as the discount factor vanishes. The Hamiltonian of the equation is a 1-dimensional continuous and coercive Hamiltonian. (C) 2019 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:330 / 338
页数:9
相关论文
共 50 条
[41]   Homogenization of a stochastically forced Hamilton-Jacobi equation [J].
Seeger, Benjamin .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2021, 38 (04) :1217-1253
[42]   Numerical schemes and rates of convergence for the Hamilton-Jacobi equation continuum limit of nondominated sorting [J].
Calder, Jeff .
NUMERISCHE MATHEMATIK, 2017, 137 (04) :819-856
[43]   A COMPARISON PRINCIPLE FOR HAMILTON-JACOBI EQUATION WITH MOVING IN TIME BOUNDARY [J].
Forcadel, Nicolas ;
Zaydan, Mamdouh .
EVOLUTION EQUATIONS AND CONTROL THEORY, 2019, 8 (03) :543-565
[44]   On a solution to the Cauchy problem for the Hamilton-Jacobi equation with state constraints [J].
Subbotina, N. N. ;
Shagalova, L. G. .
TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2011, 17 (02) :191-208
[45]   Discontinuous solutions of Hamilton-Jacobi equations on networks [J].
Graber, P. J. ;
Hermosilla, C. ;
Zidani, H. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 263 (12) :8418-8466
[47]   ON VISCOSITY AND GEOMETRICAL SOLUTIONS OF HAMILTON-JACOBI EQUATIONS [J].
CARDIN, F .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1993, 20 (06) :713-719
[48]   STOCHASTIC HOMOGENIZATION OF HAMILTON-JACOBI AND "VISCOUS"-HAMILTON-JACOBI EQUATIONS WITH CONVEX NONLINEARITIES - REVISITED [J].
Lions, Pierre-Louis ;
Souganidis, Panagiotis E. .
COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2010, 8 (02) :627-637
[49]   SEMICONCAVITY OF SOLUTIONS OF STATIONARY HAMILTON-JACOBI EQUATIONS [J].
SINESTRARI, C .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1995, 24 (09) :1321-1326
[50]   Exponential Convergence to Time-Periodic Viscosity Solutions in Time-Periodic Hamilton-Jacobi Equations [J].
Wang, Kaizhi .
CHINESE ANNALS OF MATHEMATICS SERIES B, 2018, 39 (01) :69-82