Accurately Engineering 2D/2D/0D Heterojunction In Hierarchical Ti3C2Tx MXene Nanoarchitectures for Electromagnetic Wave Absorption and Shielding

被引:68
|
作者
Wu, Zhengchen [1 ,2 ]
Yang, Ziqi [1 ,2 ]
Jin, Chen [1 ,2 ]
Zhao, Yunhao [1 ,2 ]
Che, Renchao [1 ,2 ]
机构
[1] Fudan Univ, Dept Mat Sci, Lab Adv Mat, Shanghai 200438, Peoples R China
[2] Fudan Univ, Collaborat Innovat Ctr Chem Energy Mat iChem, Shanghai 200438, Peoples R China
基金
中国国家自然科学基金;
关键词
MXene; electromagnetic interference shielding; microwave absorption; multidimension heterojunction; dielectric polarization; MICROWAVE-ABSORPTION; COMPOSITES; INTERCALATION; LIGHTWEIGHT; CAPACITANCE;
D O I
10.1021/acsami.0c21833
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The accurate heterojunction engineering in MXene-based composites unprecedentedly boosts their electromagnetic (EM) wave absorption and shielding performance. However, the flocculation of MXene caused by abundant termination groups severely restricts the regulation of heterojunction, which hankers for a revolutionary compositing strategy against unmanageable self-aggregation. Herein, electrically neutral coordination compound with large molecular volume is decorated on Ti3C2Tx lamellas to protect them from self-precipitation. A rapid polymerization reaction then controllably assembles them into a hierarchical microsphere composed of superlattice-like 2D/2D polymer/MXene building blocks. In the carbonized Ti3C2Tx/C/MoO2 microspheres, 2D/2D/0D heterojunctions can be precisely tuned to regulate electric/dielectric properties. These heterojunctions simultaneously trigger the intensive interfacial polarization and out-plane electron flowing to exhaust the EM energy as much as possible, confirmed by electron holography. Therefore, our products achieve the first-rate EM wave absorption with an ultrabroad absorption bandwidth of 7.7 GHz at the thickness of 2.5 mm. By altering the heterojunction, the composite acquires excellent EM interference shielding performance with an average shielding effectiveness of 35.9 dB. These accomplishments light a new way to microstructure construction and heterojunction design of MXene-based composites and lay out a profound insight into their EM wave absorption mechanism.
引用
收藏
页码:5866 / 5876
页数:11
相关论文
共 50 条
  • [21] Ingeniously enhanced ferromagnetism in chemically-reduced 2D Ti3C2TX MXene
    Limbu, Tej B.
    Kumari, Shalini
    Wang, Ziqiao
    Dhital, Chetan
    Li, Qi
    Tang, Yongan
    Yan, Fei
    MATERIALS CHEMISTRY AND PHYSICS, 2022, 285
  • [22] Surface-Activated Ti3C2Tx MXene Cocatalyst Assembled with CdZnS-Formed 0D/2D CdZnS/Ti3C2-A40 Schottky Heterojunction for Enhanced Photocatalytic Hydrogen Evolution
    Zhong, Tao
    Yu, Zebin
    Jiang, Ronghua
    Hou, Yanping
    Chen, Huajiao
    Ding, Ling
    Lian, Cuifang
    Zou, Binsuo
    SOLAR RRL, 2022, 6 (02)
  • [23] High catalytic performance of 2D Ti3C2Tx MXene in α-pinene isomerization to camphene
    Zielinska, Beata
    Wroblewska, Agnieszka
    Maslana, Klaudia
    Miadlicki, Piotr
    Kielbasa, Karolina
    Rozmyslowska-Wojciechowska, Anita
    Petrus, Mateusz
    Wozniak, Jaroslaw
    Jastrzebska, Agnieszka Maria
    Michalkiewicz, Beata
    Mijowska, Ewa
    APPLIED CATALYSIS A-GENERAL, 2020, 604
  • [24] Electrical Conductivity Enhancement and Electronic Applications of 2D Ti3C2Tx MXene Materials
    Qiao, Chunyang
    Wu, Han
    Xu, Xiyan
    Guan, Zhengxin
    Ou-Yang, Wei
    ADVANCED MATERIALS INTERFACES, 2021, 8 (24)
  • [25] Electrically Conductive, Transparent Polymeric Nanocomposites Modified by 2D Ti3C2Tx (MXene)
    Tanvir, Aisha
    Sobolciak, Patrik
    Popelka, Anton
    Mrlik, Miroslav
    Spitalsky, Zdenko
    Micusik, Matej
    Prokes, Jan
    Krupa, Igor
    POLYMERS, 2019, 11 (08)
  • [26] Transport properties of a highly conductive 2D Ti3C2Tx MXene/graphene composite
    Aissa, B.
    Ali, A.
    Mahmoud, K. A.
    Haddad, T.
    Nedil, M.
    APPLIED PHYSICS LETTERS, 2016, 109 (04)
  • [27] Anomalous Radio Frequency Conductivity and Sheet Resistance of 2D Ti3C2Tx MXene
    Tajin, Md Abu Saleh
    Dandekar, Kapil R.
    IEEE ACCESS, 2022, 10 : 25850 - 25856
  • [28] Enhancing the magnetism of 2D carbide MXene Ti3C2Tx by H2 annealing
    Zhang, Kaiyu
    Di, Maoyun
    Fu, Lin
    Deng, Yu
    Du, Youwei
    Tang, Nujiang
    CARBON, 2020, 157 : 90 - 96
  • [29] Designing advanced 2D/2D heterojunctions of MoS2 nanosheets/Ti3C2Tx MXene in gas-sensing applications
    Tian, Rusen
    Ding, Yongling
    Wang, Qi
    Song, Peng
    VACUUM, 2024, 222
  • [30] Piezoresistive Sensors Based on Electrospun Mats Modified by 2D Ti3C2Tx MXene
    Sobolciak, Patrik
    Tanvir, Aisha
    Sadasivuni, Kishor Kumar
    Krupa, Igor
    SENSORS, 2019, 19 (20)